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Mechanical fasteners, commonly used in many advanced engineering applications dealing with compos-
ite laminates, play the main role of transferring loads between the linked structural elements. The pres-
ent study, focused on pinned-joints, explores the possibility of applying a direct method for evaluating the
joint’s strength as well as for predicting some of the more common joint’s failure mechanisms. A limit
analysis numerical approach for statically loaded pinned-joint orthotropic laminates in plane stress con-
ditions is proposed. Two well known numerical procedures for limit analysis likewise having common
roots, namely the Linear Matching Method and the Elastic Compensation Method, are utilized to evaluate
upper and lower bounds to the joint collapse load. Both methods are rephrased assuming for the material
in use a Tsai–Wu type yield surface. The results obtained are compared and plotted against some avail-
able experimental findings. Some final remarks draw attention to the potentialities and the limits of the
proposed approach.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanical properties of composite laminates, nowadays
widely employed in many advanced engineering fields, make them
attractive for structural applications where high strength-to-
weight and stiffness-to-weight ratios are required. Mechanical fas-
teners (like bolts, rivets, pin-connectors) are commonly used in
these applications for transferring loads between the structural
components. Such fasteners, extensively used mainly because they
are easy to assemble or disassemble, are characterized by an high
stress concentration near the hole area which becomes a source of
weakness; the structural joint failure usually beginning at the fas-
teners sites. A great deal of research has therefore concentrated on
the evaluation of the joint’s strength as well as on the prediction of
the failure mechanism. The review papers of Camanho and Mat-
thews [10] and Thoppul et al. [57] provide an extensive list of per-
tinent contributions covering the past two decades, some of which
also dealing with the current design practice for pinned-joints and
connections. Undoubtedly, the bright and actual interest on this re-
search subject is witnessed by very recent contributions, see e.g.
Ascione et al. [3,4] or Gray and McCarthy [23].

Analytical (continuum approaches) and numerical (mainly fi-
nite element based approaches) methods have been used to per-
form stress analyses on mechanically fastened joints. Following
this research line the main task is the deduction of the stress
ll rights reserved.
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distribution around the fastener hole. To this aim different hypothe-
ses are assumed on the pin-hole interaction concerning, for exam-
ple, the modelling of the pin, the load distribution at the pin-hole
boundary, the stacking sequence of the laminate and so all the
through-thickness effects like, for example, friction or clearances.
In particular, the analytical methods are mainly based on orthotro-
pic elasticity problems formulated in terms of complex variable
theory, the numerical methods are grounded on two-dimensional
finite element analyses in conjunction with classical lamination
theory. Iterative or inverse methods have been also used in this
context, as well as many three-dimensional finite element models
have been proposed to take into account through-thickness effects.

A considerable number of approaches are also those based on
the strength prediction methods. The determination of the joint
strength depends on the definition of failure that can vary from
the maximum load sustained by the joint to a criterion based on
the deformation of the hole. Failure theories at the lamina level
or point- and average-stress methods, the latter taking into ac-
count localized damage, belong to this second research line. In
the same context can be also framed the methods based on linear
elastic fracture mechanics and the progressive damage models. The
latter, developed to deal with the damage that occurs prior to lam-
inate failure, try to simulate damage initiation and growth using
elastic property degradation models.

A third, more recent, research line includes experimental stud-
ies, mechanical test standards and, in general, semi-empirical proce-
dures combined with experimental data to predict the joint strength
as a function of the basic laminate properties and joint geometrical
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(a)

Fig. 1. Schematic representation of a pin-loaded composite rectangular plate: (a)
fixture test for load bearing capacity evaluation; (b) mechanical model, boundary
and loading conditions.
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parameters. A variety of recent joint design methodologies involve
numerical analyses either based on finite (or boundary) element
codes or even on genetic algorithms. The significant advances that
have been made in the experimental characterization of the joint
failure modes through non-destructive evaluation techniques al-
lowed the use of the above approaches often related to an accurate
identification of material parameters.

As general remark it is worth to note that a common requisite of
the different approaches, aimed at analyze mechanically fastened
joints, is the knowledge of the experimental joint behaviour either
in terms of modes of failure or in terms of influence the geometric
and material parameters have on its mechanical response. The
through-thickness effects or the environmental conditions affect-
ing the mechanical properties of the constituent materials are
other important matters that should be taken into account.

In the present study, far off the will of furnishing an exhaustive
solution to such a complex problem, a limit analysis numerical ap-
proach for statically loaded pinned-joint orthotropic laminates in
plane stress conditions is proposed. The same problem has been
treated, in terms of evaluation of an upper bound to the collapse
load multiplier, in a very recent contribution of the present authors
[22]. The results there presented, although confirming the potenti-
alities of the approach, either in terms of estimation of the collapse
load value or in terms of collapse mode prediction, are affected by
the congenital inability of a method based on the kinematic ap-
proach of limit analysis applied to a non standard material; namely
the inability of predicting how far is the computed upper bound
from the real collapse load value. As known, the general lack of
associativity of an anisotropic composite material, even if can be
handled by a nonstandard limit analysis approach, see e.g. Lubliner
[34], Radenkovic [46], generates an unavoidable gap between the
upper bound and the collapse load value whose knowledge is nev-
ertheless essential for practical engineering applications.

In this context a crucial task for design purposes is indeed the
definition of a lower bound to the collapse load multiplier and
the consequent assessment of the gap between the two bounds,
namely the upper and lower one; this is one of the main goal of
the present study. The comparison between the obtained numeri-
cal results and the experimental ones, available for the chosen
mechanical problem, is another essential task of the present study
being aware of the fact that there is no definitive method to predict
joint strength but as much aware that the effectiveness of a numer-
ical method can be judged only by comparison with experimental
findings.

The proposed numerical approach, refer to Fuschi et al. [22] and
Pisano and Fuschi [42] for its kinematic version, can be viewed as
an extension, in the context of orthotropic materials, of a method
known in the relevant literature as Linear Matching Method
(LMM), see e.g. Ponter and Carter [43]; Ponter et al. [44]; Chen
et al. [14]; Barrera et al. [6]. The LMM turns to an iterative proce-
dure providing, at each iteration, an upper and a lower bound to
the collapse load. In practice the obtained lower bound is a lower
bound to the least upper bound of the computed sequence and,
in this sense, it can be viewed as a pseudo lower bound (Ponter
and Carter [43]). The evaluation of the lower bound is then also
carried on following the procedure applied in Mackenzie and Boyle
[36], and recently extended in Hamilton and Boyle [24], known as
Elastic Compensation Method (ECM). The latter method, proposed in
the early nineties, is actually the precursor of the LMM, both meth-
ods sharing many common characteristics. The two methods are
rephrased and adapted to the assumed constitutive laws and the
differences obtained in terms of lower bounds evaluation are out-
lined for the run examples.

The examined structural elements are composite laminates
obeying, by hypothesis, to a Tsai–Wu type yield criterion defined as
a second-order tensor polynomial form of the Tsai–Wu failure
criterion for composite laminates [59]. This criterion is one of the
best known showing a very good capability for predicting failure
of composite laminates [56].

A few numerical examples are carried out to verify the effec-
tiveness of the proposed approach as well as to inquire into its
capability to predict experimental test results for pinned-joint
composite prototypes. The numerically detected upper and lower
bounds to the collapse load allows one to predict a range of limit
load values within which the real collapse load should be located.
Precisely, four experimental laboratory tests (after [61]) have been
chosen as cases-study; they actually exhibit the typical different
collapse joint mechanisms. The numerical results, obtained in
terms of collapse mode prediction of the analyzed prototypes,
are indeed very encouraging either for the very good agreement
with the experimental findings or for the ability of the proposed
procedure to locate accurately the collapse zone and the related
collapse mode.

The structure of the paper is the following: after this introduc-
tory section, Section 2 poses the mechanical problem, i.e. a
pin-loaded plate in tension, and frames the basic concepts and
assumptions for its treatment via a limit analysis approach. Sec-
tion 3 summarizes some basic concepts of limit analysis theory
focusing on its application to non standard materials. The constitu-
tive assumptions are also stated. An abridged description of the
LMM and the techniques for the numerical evaluation of an upper
and a lower bound on the collapse load are given in Section 4. The
differences in the lower bounds evaluation via the LMM and the
ECM are then investigated and pointed out at closure of this sec-
tion. All the numerical findings are given in Section 5 where the
potentialities and the limits of the proposed approach are outlined.
Some final remarks together with critical comments and possible
improvements are finally given in Section 6 which closes the paper.
1.1. Notation

Subscripts denote Cartesian components and the repeated in-
dex summation rule is to be applied. Bold face symbols denote vec-
tors or tensors. Cartesian orthogonal co-ordinates x = (x1, x2, x3) are
employed. The symbol := means equality by definition. Other sym-
bols will be defined in the text where they appear for the first time.
2. The mechanical problem: a pinned-joint composite plate

Let us consider the pin loaded rectangular composite plate of
Fig. 1 where the fixture test for load bearing capacity evaluation
as well as the geometry, boundary and loading conditions of the
pertinent mechanical model are sketched. The plate has: length
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L + E; width W; thickness t; the fastener hole has diameter D and is
located on the symmetry axes of the plate (y) at a distance E from
the free edge. The pin is assumed rigid and located at the centre of
the fastener hole. The loading is modelled as a load P transmitted
by the pin to the plate being the upper grip edge the external con-
strained boundary. The further hypothesis of a cosine load normal
distribution to approximate the pressure exerted by the pin on the
inner hole surface is here assumed. To this concern, with reference
to Fig. 1b, Ti denote the acting normal loads, ni the unit vector nor-
mal to the inner hole surface and h a clockwise angle varying in the
range [�p/2, p/2]. It is worth noting that such a cosinusoidal stress
distribution was found by several authors to be satisfactorily accu-
rate only for quasi-isotropic laminates and small clearances. The
scheme of Fig. 1 is then the typical one to study mechanically fas-
tened pinned or bolted joints in composite laminate, attention is
hereafter focused on pinned-joints.

As observed in the relevant literature, see e.g. the review papers
of Camanho and Matthews [10], Thoppul et al. [57] and references
therein, the joints are often the critical part of a composite struc-
ture and the main research efforts are oriented to comprehend
all the aspects of the joint design. As suggested in Camanho and
Lambert [9] a reliable methodology to design mechanically fas-
tened joints in composite laminates has to be able to predict both
the elastic limit of the joint, i.e. the load at which crack initiation
takes place, and the ultimate failure load of the joint. The capability
to detect the failure modes of the joint should also be assured. Typ-
ically, three main failure modes can be individuated, see e.g.
Fig. 2a–c, other modes being a combination of them or, simply, sec-
ondary modes, see e.g. Fig. 2d and e; see again Thoppul et al. [57] or
D5961/D5961M-05 Standards [17]. Concerning the main failure
modes, it is known that net tension and shear out are catastrophic
and due to excessive tensile stress value on the net area through
the fastener hole and excessive shear stress on the areas emanating
from the hole edge parallel to the load, respectively. Net tension
and shear out modes can be avoided by increasing the ratios
W/D or E/W respectively. Bearing failure is characterized by high
(a) Net-tension 

P 

(b) Shear-out (c) Bearing 

P P 

(d) Tear-out 

P 

(e) Cleavage 

P P 

Fig. 2. Pin-loaded rectangular plate: sketch of the typical failure modes.
compressive stress values within the zone surrounding the loaded
inner hole surface and it is a gradual and progressive failure mode
of non-catastrophic nature. Secondary failure modes, such as tear
out and cleavage, occur only after bearing failure and are not con-
sidered in the following.

Even if the posed problem has been deeply studied since the late
seventies, many questions are still open to discussion. It is known
that the failure of a mechanically fastened joint depends on many
factors, e.g. connection geometry; constituent materials properties;
fiber orientation; stacking sequence; position of the fastener hole;
clearance; loading conditions; or, for composite having polymeric
constituents, environmental conditions. For polymer–matrix com-
posites, for example, creep, relaxation and other manifestations of
viscoelastic behaviour exhibited at room temperature can be magni-
fied at elevated moisture and/or temperature levels. Aging can also
affect the mechanical properties of the constituent materials. The
list of factors is certainly not complete and, obviously, even
sophisticated joint design methodologies, involving the use of
computer-based methods fed by experimentally identified material
parameters, cannot handle the complexity of the problem. Many
approaches result often very effective and precise only for specific
joint set up and specific composite laminates being indeed hardly
generalizable to other contexts or materials.

The limit analysis numerical method here proposed tackles the
pinned-joint problem at a (macro) structural level. The method is
focused on the possibility of locating a range of load levels bracket-
ing the load value which produces the joint collapse. It might be
from many aspects inaccurate but, with all its limits and approxi-
mations discussed in the following, it appears simple, rather effec-
tive, of general applicability, being also able to catch some
important aspects of the overall joint behaviour at collapse.

Three main simplifying assumptions are adopted to analyze the
pinned-joint problem: (i) the effects of the actual stacking se-
quence of the laminate are not taken into account and an equiva-
lent single layer laminate is analyzed, i.e. an homogenization
process is implicitly assumed; (ii) three-dimensional or, through-
thickness effects are neglected and a plane stress problem is con-
sidered; (iii) the constitutive behaviour of the composite laminate
obeys, by hypothesis, to a second-order tensor polynomial form of
Tsai-Hu failure criterion (Tsai and Wu [59]). Other simplifying
assumptions concerning the limit analysis theory in the context
of non standard materials are given in the next Section where
the fundamentals of the LMM, extended by the authors to ortho-
tropic materials in Fuschi et al. [22], are briefly summarized.
3. Limit analysis for orthotropic laminates

Limit analysis allows the direct evaluation of the load bearing
capacity of a structure or of a structural element. In its classical
(original) formulation the theory of limit analysis refers to per-
fectly plastic structures and it is based on a lower and an upper
bound theorem (Drucker et al. [19]; Prager [45]). The bound theo-
rems allow the exact determination of the load value that will
cause collapse.

Following a standard formalism, an upper bound to the collapse
load multiplier for a given body of volume V is given by:

PUB

Z
@Vt

�pi _uc
i dð@VÞ ¼

Z
V
rY

j
_ec

j dV ; ð1Þ

where _ec
j ¼ _k@f=@rj are the components of the strain rate at collapse

having the direction of the outward normal to the yield surface
f(rj) = 0 (with _k > 0 a scalar multiplier); rY

j are the stresses at yield
associated to the given compatible strain rates _ec

j ; _uc
i are the related

displacement rates. Moreover, �pi are the surface force components
of the reference load vector �p acting on the external portion @Vt
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of the body surface. For simplicity, only surface forces are consid-
ered. Finally, PUB denotes the upper bound load multiplier. The set
( _ec

j ; _uc
i ) defines a collapse mechanism. On the other hand, if at every

point within V exists a stress field ~rj which satisfies the condition
f ð~rjÞ 6 0 and in equilibrium with the applied load P�p for a value
of P, say PLB, then PLB is a lower bound to the collapse limit load mul-
tiplier. The two assertions above, as known, lead to two classical ap-
proaches of limit analysis, namely: the kinematic and the static one.
If the loads produced by their application are equal to each other,
circumstance verifiable only for standard materials, then they equal
the collapse load.

The rapid development of finite element based analyses was
undoubtedly an essential contribution to the success of direct
methods (see e.g. Hodge and Belytschko [27]; Belytschko and
Hodge [7]; Save [47]; Chen and Shu [15]). Linear programming first
(see e.g. Sloan [54]), nonlinear programming algorithms after (see
e.g. Lyamin and Sloan [33]), till highly specialized optimization
algorithm (see e.g. Andersen et al. [2]) are all examples of limit
analysis approaches based on FE analyses in conjunction with opti-
mization algorithms. The papers by Makrodimopoulos and Martin
[37] or by Muñoz et al. [40], where second-order cone program-
ming is applied to cohesive-frictional materials or within an adap-
tive remeshing strategy respectively, are, among other, the more
recent contributions belonging to this research line. Limit analysis
numerical approaches grounding on complex method, to solve
nonlinear programming problem, in conjunction with symmetric
Galerkin boundary element method or element-free Galerkin
method (see e.g. Zhang et al. [64]; Chen et al. [12]) are other inter-
esting examples of current research activity. For an updated review
of the existing methodologies of the so-called ‘‘Direct Methods’’,
embracing limit and shakedown analysis, with extensions to new
horizons of application for industrial design, reference can be made
to the very recent book of Weichert and Ponter [60].

Application of limit analysis outside the realm of perfect plastic-
ity is witnessed by several studies even coeval of the pioneer ones
like the papers by Drucker and Prager [20], Shield [52], Kooharian
[30], Heyman [26], or, later on the studies of Radenkovic [46], Joss-
elin de Jong [29], Palmer [41], Atkinson and Potts [5], till, among
the more recent ones, the works of Sloan and Kleeman [55], Yu and
Sloan [62], Zheng et al. [65], Boulbibane and Ponter [8]. Moreover,
several studies (Shu and Rosen [53]; McLaughlin and Batterman
[39], Francescato and Pastor [21]; Capsoni et al. [11]; Ma et al.
[35]; Corradi and Vena [16]; Li and Yu [31]; Zhang et al. [63]) concern
limit analysis in the context of composite laminates, some of them
explicitly referring to orthotropic materials, i.e. the ones of interest
in the present study. In this context has to be framed the methodol-
ogy here adopted which follows a nonstandard limit analysis theory in
the sense of Radenkovic (Lubliner [34]; Radenkovic [46]).

3.1. Non standard limit analysis and constitutive assumptions

Adopting Radenkovic’s approach the two limit analysis funda-
mental theorems can be rephrased once again in the shape of
upper and lower bound theorems, see e.g. Lubliner [34]. After all,
every value of the limit load for a non standard body is located be-
tween two fixed boundaries defined by the values of the limit loads
computed considering the body made by two standard materials
whose yield surfaces are one outer, the other inner, to that of the non-
standard material. Obviously, Radenkovic’s approach locates a
range of collapse load multiplier values, because for non standard
material structures the uniqueness of the limit load is uncertain.

Assuming for the material in use an yield surface expressed by a
second-order tensor polynomial form of the Tsai–Wu criterion
(Tsai and Wu [59]; Capsoni et al. [11]; Tsai and Hann [58]), the lack
of associativity, if this latter essential requisite it is not postulated,
may be overcome by the Radenkovic’s approach.
By denoting with 1 and 2 the principal directions of orthotropy
in plane stress case as well as indicating r6 � s12, as usual for com-
posite laminates (see e.g. Jones [28]), the adopted Tsai–Wu type
criterion is expressed by:

F11r2
1 þ F22r2

2 þ F66r2
6 þ 2F12r1r2 þ F1r1 þ F2r2 ¼ 1; ð2Þ

where

F1 : ¼ 1
Xt
þ 1

Xc
; F2 : ¼ 1

Yt
þ 1

Yc
; F11 : ¼ � 1

XtXc
;

F22 : ¼ � 1
YtYc

; F66 : ¼ 1

S2 ; F12 : ¼ �1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F11F22

p
; ð3Þ

with Xt, Xc the longitudinal tensile and compressive strengths
respectively; Yt, Yc the transverse tensile and compressive strengths
respectively and S the longitudinal shear strength. It is worth to re-
mind that, in a dimensionless stress space, say (X, Y, Z), the simpli-
fied second-order form (2) can be written as:

X2 þ Y2 þ Z2 þ 2f 12XY þ f1X þ f2Y ¼ 1; ð4Þ

where

X :¼
ffiffiffiffiffiffiffi
F11

p
r1; Y :¼

ffiffiffiffiffiffiffi
F22

p
r2; Z :¼

ffiffiffiffiffiffiffi
F66

p
r6;

f12 :¼ F12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F11F22
p ; f 1 :¼ F1ffiffiffiffiffiffiffi

F11
p ; f 2 :¼ F2ffiffiffiffiffiffiffi

F22
p : ð5Þ

Moreover, in the dimensionless space (X, Y, Z), Eq. (4) individuates
an ellipsoid whose major axis lies on Z = 0 plane and it is rotated
by a counterclockwise angle of 45 degrees with respect to the X axis.

The choice of the Tsai–Wu failure criterion, as base to define an
yield surface, grounds on the following remarks:

(i) The Tsai–Wu interactive failure criterion belongs to the five
leading theories selected within the World-Wide-Failure-
Exercise conceived to establish the current status of failure
prediction theories for polymer composite laminates, as
the ones treated hereafter (see e.g. Soden et al. [56] and ref-
erences therein or the recent contribution of Lopez et al.
[32]).

(ii) The Tsai–Wu type yield criterion, in the quadratic form
adopted, is simple; it allows one to apply the standard rules
of transformation, invariance and symmetry; it also contem-
plates interactions among the stress or strain components
analogously to the Von Mises criterion for isotropic
materials.

(iii) The adopted yield criterion is used to locate stress states at
which the material has exhausted its strength capabilities,
namely stress points lying on the domain boundary. The
assumption of an yield surface in the shape given by Eqs.
(2) or (4), is of axiomatic type and is necessary to perform
limit analysis. To assume the further hypothesis of an asso-
ciate flow rule is, at least in principle, possible but it does not
seem appropriate for orthotropic composite materials. The
choice to consider a non associate flow rule, so resorting to
a nonstandard limit analysis approach, appears, to the
Authors’ opinion, more general and confers a wider applica-
bility to the proposed procedure which can be easily imple-
mented with different (convex) yield surfaces.

(iv) On taking into account both the strict convexity of the yield
surface (2) or (4) and the Radenkovic’s first statement, it will
be possible to search for an upper bound on the collapse load
multiplier with reference to the Tsai–Wu type surface itself.
A different strategy, with respect to the Radenkovic’s second
statement, will be adopted for the lower bound evaluation
which would require the knowledge of a plastic potential
function for the non standard material in use. This point will
be deeply discussed in the next section.
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4. Limit analysis via FE-based numerical methods

4.1. Linear Matching Method for upper and lower bounds evaluation

The LMM, theorized and worked out by Ponter and co-workers
in the last decade (see e.g. Ponter and Carter [43]; Ponter et al. [44];
Chen et al. [14]; Barrera et al. [6]), has been recently extended to
orthotropic composite laminates by the present authors, Fuschi
et al. [22]. The quoted papers are then referred to for a detailed
description of the method; hereafter only a brief summary, aimed
at highlight the essentials of the method, is reported. A major
attention is indeed focused on the lower bound evaluation carried
out within the expounded procedure.

On taking into account Eq. (1) and the formalism adopted at
Section 3 for the evaluation of the bounds on the collapse load
the following can be stated. The LMM is aimed at constructing a
collapse mechanism—namely the kinematic fields _ec

j , _uc
i —for the

evaluation of a PUB or, at defining an equilibrated stress distribution
satisfying the admissibility conditions—namely erj—for the evalua-
tion of a PLB. Moreover, the LMM involves a sequence of FE-based
analyses assuming the studied structure as made of a material with
spatially varying moduli, i.e. a fictitious material. Let discuss the
upper bound evaluation first.

At each step—namely at each FE analysis—a fictitious FE-solu-
tion is used to define, at the Gauss points of the adopted FE mesh,
a collapse mechanism for the real structure in terms of stress at
yield, rY

j , plus related strain and displacement rates, namely

_ec
j ; _uc

i

� �
. Looking at Eq. (1), these information allows one to evalu-

ate an upper bound to the collapse load multiplier. The sequence
(i.e. the iterative process) stops when the difference between two
subsequent upper bound values becomes less than a fixed
tolerance.

The LMM here adopted utilizes a fictitious linear viscous material
which is orthotropic and subjected to a distribution of imposed initial
stresses. Reference is made to an orthotropic laminate under plane
stress conditions whose material parameters, Young moduli and
Fig. 3. 3D geometrical sketch, in the stress space (r1, r2, r6), of the matching procedure
which the matching is achieved.
Poisson’s ratio, have been fixed, say to values: Eð0Þ1 , Eð0Þ2 , Eð0Þ6 , mð0Þ12 ,
respectively. The structure is also subjected to a given distribution
of initial stresses: �rð0Þ1 , �rð0Þ2 , �rð0Þ6 . The notation (�)(0) refers to an ini-
tial arbitrary choice of the quantity (�). For this fictitious material
the complementary dissipation rate can be written as:

W rj;E
ð0Þ
j ;mð0Þ12 ; �r

ð0Þ
j

� �
¼ 1

2
r2

1

Eð0Þ1

þ r2
2

Eð0Þ2

þ r2
6

Eð0Þ6

�2mð0Þ12
r1r2

Eð0Þ2

þ
"

�2
�rð0Þ1

Eð0Þ1

�mð0Þ12

�rð0Þ2

Eð0Þ2

 !
r1�2

�rð0Þ2

Eð0Þ2

�mð0Þ12

�r1
ð0Þ

Eð0Þ2

 !
r2�2

�rð0Þ6

Eð0Þ6

r6

þ
�rð0Þ

2

1

Eð0Þ1

þ
�rð0Þ

2

2

Eð0Þ2

þ
�rð0Þ

2

6

Eð0Þ6

�2mð0Þ12

�rð0Þ1
�rð0Þ2

Eð0Þ2

#
; ð6Þ

where by hypothesis, the moduli Eð0Þj ðj ¼ 1;2;6Þ are allowed to as-
sume different values at different points in the structure, i.e. they
are spatially varying, (the initial choice can assume the same values
at all points). For this fictitious material and at a fixed value of the
load multiplier, say Pð0ÞUB , a linear FE-analysis is performed on the
whole structure to compute: the strain rates _ee

j ¼ @Wðre
j =@re

j Þ;
the related stresses re

j ; the compatible displacement rates, _ue
i , of

the points at which surface loads act. The fictitious kinematic solution
_ee

j ; _ue
i

� �
so computed (operatively at each Gauss point of the

adopted FE mesh), is then forced to represent a collapse mechanism,
namely it is forced to identify with _ec

j ; _uc
i

� �
of Eq. (1).

To this aim, referring to the 3D sketch of Fig. 3 where, as as-
sumed, the fixed fictitious initial values of the elastic parameters
and stresses are denoted by (�)(0), on keeping _ee

j fixed, it is sufficient
to compute the stress at yield, say rY

j , associated to _ee
j —so assumed

as a given _ec
j —and to vary (to scale down in the sketch of Fig. 3) the

fictitious moduli and initial stresses (values (�)(⁄) in Fig. 3) so that
re

j coincides with rY
j ; the fictitous _ue

i so representing the compati-
ble displacements _uc

i associated to _ec
j . Executing such operation at

all Gauss points of the discretized structure, Eq. (1) can be used
to compute a Pð�ÞUB. The above rationale, from a geometrical point
of view (see again Fig. 3), merely states that the complementary
dissipation rate equipotential surface of the fictitious material,
W rj; Eð�Þj ; mð�Þ12 ; �rð�Þj

� �
¼ const:, matches the Tsai–Wu type surface
fulfilled at the generic Gauss point: (�)(0) = initial arbitrary values; (�)(⁄) = values at
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at the stress point rY
j . The stresses at yield computed at matching,

obviously do not satisfy the equilibrium conditions with the loads
Pð0ÞUB

�p and a new fictitious analysis has to be performed on the
whole structure with the updated Eð�Þj values and loads Pð�ÞUB

�p. In-
deed, the whole procedure has to be carried out iteratively, the
iterations stopping when two subsequent computed PUB values be-
come close to each other.

Remark 1. An essential requisite of an iterative procedure is the
certainty of its convergence; to this concern, it is worth mentioning
that the expounded procedure fulfils the sufficient condition for
convergence given in Ponter et al. [44] and the final PUB value is
normally attained in few iterations.
Remark 2. The formal analogy existing between the linear viscous
problem and the linear elastic problem allows one to compute, at
each iteration, a fictitious elastic solution, looking at
W rj; Eð0Þj ; mð0Þ12 ; �rð0Þj

h i
of Eq. (6) as at the complementary energy

potential of a fictitious elastic material. The fictitious elastic anal-
yses can then be carried out by any commercial FE-code with obvi-
ous advantages.
Remark 3. As noted in Ponter and Carter [43], the correctness of
the PUB depends on the kinematic description of the discretized
problem and it is then related to the adopted FE mesh. In this sense
the PUB converges to the minimum upper bound allowed by the
class of displacement fields given by the mesh itself. This drawback
is easily overcome by using fine meshes in the analysis.
Remark 4. The matching, or the updating of the Ej values, is car-
ried into effect at each GP in the FE mesh. However, to avoid accu-
racy problems, in a FE procedure a unique set of Ej—i.e. a unique
(orthotropic) material—is assigned to each single element. To this
aim, the Eð�Þj updated at matching are averaged within the single
element at the beginning of each FE analysis, the averaged values
being given at all the GPs of the element.
Fig. 4. 3D geometrical sketch, in the stress space (r1, r2, r6), for lower bound
evaluation: A, B and C, stress points representing the average stress values inside
three generic FEs, say elements #1, #2 and #3; re

#i ¼ average elastic stress within
element #i (for PLB evaluation re

#i it is also a fictitious stress); rY
#i ¼ stress at yield on

the direction re
#i= j re

#i j; di = distance of the stress point from the center of the Tsai–
Wu type yield surface.
A lower bound, PLB, to the collapse load multiplier can also be
provided within the expounded procedure. At each iteration the
fictitious stress values pertinent to loads PUB �p and computed at
each GP of each FE are averaged within the single element. It would
be incorrect to average across elements since the elastic moduli of
adjacent elements are different. A stress point corresponding to
each averaged (element) value can then be located in the stress
space. Among all such stress points the one farthest away from
the Tsai–Wu type surface is detected, say re

F (point C in Fig. 4)
and this merely by computing the Euclidean distances from the
ellipsoid center. The ratio q between the modulus of the yield
stress vector measured on the direction re

F /j re
F j, say j rY

F j (seg-
ment OC 0 in Fig. 4, where d3 > d1 > d2), over the modulus of the
stress vector j re

F j (segment OC in Fig. 4) allows one to define a
lower bound multiplier in the shape:

PLB :¼ qPUB with q :¼ j r
Y
F j

j re
F j
< 1; ð7Þ

q being the rescaling factor such that all the computed stresses
qre—in equilibrium with the loads qPUB �p—satisfy the admissibility
conditions of the static approach for limit analysis. Some further re-
marks can now be drawn.

Remark 5. The rationale followed for the PLB evaluation gives a
lower bound to the computed minimum upper bound; Eq. (7)
yields, in facts, a pseudo-lower bound. A different strategy, based on
the elastic compensation method (see e.g. Hamilton and Boyle
[24]), will be examined in the next subsection.
Remark 6. The matching procedure can be implemented in a
much simpler way if both surfaces, the Tsai–Wu type one, given
by Eq. (2) and the complementary dissipation equipotential surface
of the fictitious material, expressed by Eq. (6) in the shape
W rj; Eð0Þj ; mð0Þ12 ; �rð0Þj

h i
= const. = W ð0Þ, are rephrased in the dimen-

sionless stress space usually adopted for the Tsai–Wu criterion
(see e.g. Eq. (4) and positions (5)). Such a simplification is obtain-
able by taking advantage either of the ellipsoidal shapes of the
two surfaces or of their simpler analytical forms in (X, Y, Z)-space.
If the fictitious material is, from the beginning of the analysis,
defined in such a way that its complementary energy equipotential
surface is homothetic to the Tsai–Wu type surface, the two ellip-
soids can be made coincident at matching. As a consequence, only
one scalar parameter has to be iteratively updated, namely the
homothety ratio between the two ellipsoids; see Fuschi et al. [22]
for further details.

The whole iterative procedure is summarized in Table 1 for
completeness.

4.2. Lower bound evaluation via Elastic Compensation Method

The elastic compensation method was originally presented for
lower bound limit analysis of pressure vessels components, Mac-
kenzie and Boyle [36]. An estimate of the limit load was there
achieved by a sequence of elastic finite element analyses aimed at
producing an effective admissible stress field for the lower bound
theorem. The method was later derived and verified for upper
bound limits and shakedown problems (see e.g. Hamilton et al.
[25] and references therein). The key ideas of the ECM can be
traced back to a technique known as the ‘‘reduced modulus meth-
od for stress categorisation in pressure vessels’’. Following this
method, rather than perform inelastic analyses, the inelastic re-
sponse was investigated by iterative elastic analysis in which
highly loaded regions of the structure were systematically weak-
ened by reduction of the local modulus of elasticity and this in or-
der to simulate the effects of local inelasticity (see e.g. Dhalla and



Table 1
Iterative scheme of the LMM for PUB and PLB evaluation.

� Initialization
Knowing the strength values of the orthotropic material (Xc; Xt; Yc; Yt; S); assign to all FEs an initial set of fictitious elastic parameters and initial stresses such that
the complementary energy equipotential surface is homothetic to the Tsai–Wu type surface, i.e.:

Eð0Þ1 ¼ 1=ð2F11Þ; Eð0Þ2 ¼ 1=ð2F22Þ; Eð0Þ6 ¼ 1=ð2F66Þ;
mð0Þ12 ¼ �f12

ffiffiffiffiffiffiffi
F11

p
=
ffiffiffiffiffiffiffi
F22

p
;

�rð0Þ1 ¼ aTW=
ffiffiffiffiffiffiffi
F11

p
; �rð0Þ2 ¼ bTW=

ffiffiffiffiffiffiffi
F22

p
; �rð0Þ6 ¼ 0;

aTW and bTW being the X, Y co-ordinates of the Tsai–Wu type ellipsoid centre, while F11, F22 and F66 are functions of the strength values. Set also: k = 1, Pðk�1Þ
UB ¼ Pð0ÞUB ¼ 1 (for

k = 1, Pð0ÞUB can be any arbitrary value) and compute the constant X ¼ 1þ a2
TW þ 2f 12aTW bTW þ b2

TW for later use.
� Start iterations

step # 1: perform a fictitious elastic analysis with elastic parameters Eðk�1Þ
j , m12 ¼ mð0Þ12 , initial stresses �rj ¼ �rð0Þj and with loads Pðk�1Þ

UB
�pi , computing a fictitious elastic

solution at Gauss point level, namely: _eeðk�1Þ
j , _uðk�1Þ

i , reðk�1Þ
j .

step # 2: compute the constant value of the complementary potential energy:

W ðk�1Þ ¼ 1
2
reðk�1Þ

j eeðk�1Þ
j

step # 3: compute the homothety ratio, namely

Cðk�1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X=W ð0Þ

q
for k ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W ðk�2Þ=W ðk�1Þ
q

for k > 1

8><>:
step # 4: evaluate stresses at yield:

rYðk�1Þ
1 ¼ 1� Cðk�1Þ

h i aTWffiffiffiffiffiffiffi
F11
p þ Cðk�1Þreðk�1Þ

1

rYðk�1Þ
2 ¼ 1� Cðk�1Þ

h i bTWffiffiffiffiffiffiffi
F22
p þ Cðk�1Þreðk�1Þ

2

rYðk�1Þ
6 ¼ Cðk�1Þreðk�1Þ

6

step # 5: set _ecðk�1Þ
j ¼ _eeðk�1Þ

j , _ucðk�1Þ
i ¼ _ueðk�1Þ

i and evaluate the upper bound multiplier

PðkÞUB ¼
R

V rYðk�1Þ
j

_ecðk�1Þ
j dVR

@Vt
�pi _ucðk�1Þ

i dð@VÞ

step # 6: average the fictitious stress values inside each element and locate, among all the corresponding stress points, the one further away from the Tsai–Wu
type surface, namely reðk�1Þ

F . Locate also the related stress point rYðk�1Þ
F so computing the rescaling factor

qðkÞ ¼ jr
Yðk�1Þ
F j
jreðk�1Þ

F j

step # 7: evaluate a lower bound multiplier

PðkÞLB ¼ qðkÞPðkÞUB

step # 8: check for convergence

jPðkÞUB � Pðk�1Þ
UB j 6 TOL

YES ) EXIT
NOT ) CONTINUE

�
step # 9: compute the EðkÞj distribution accomplishing the matching at each GP to be utilized at next iteration, namely:

EðkÞj ¼ Eðk�1Þ
j ½Cðk�1Þ�2 j ¼ 1;2;6

step # 10: average the updated EðkÞj values within each element; set k = k � 1 and GOTO step #1
� End iterations
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Jones [18], Marriot [38], Seshadri [48,49]). What is of interest in the
above studies is obviously, rather than the actual categorisation,
the way in which the effects of local inelasticity were assessed.
And, in facts, in 1991 Seshadri and co-workers proposed a proce-
dure for approximate estimates of limit load using the reduced
modulus method (see e.g. Seshadri and Fernando [51], Seshadri
[50]). The ECM hereafter employed refers to the paper of Macken-
zie and Boyle [36] and to begin with a brief survey of the way it
acts is given next.

A sequence of linear elastic FE analyses is carried out in which
the elastic modulus in each element is modified, for the ith itera-
tion, according to

EðiÞ#e ¼ Eði�1Þ
#e

rn

rði�1Þ
#e

; ð8Þ

where Eði�1Þ
#e is the modulus used in the #eth element at previous anal-

ysis; rn is a ‘‘nominal’’ stress usually taken as half or two-thirds yield;
rði�1Þ
#e is the maximum unaveraged nodal equivalent stress attained

within the eth element in the previous (i � 1) finite element solution.
The procedure is carried out for a given arbitrary—perhaps the de-
sign—load level PD until the maximum stress value in the whole FE
mesh, measured in the Rth iteration, has attained its lowest value,
say rR, and is not reduced by further modifications of the elastic mod-
uli. This near limit value rR, attained by the maximum stress in the
model after several iterations, may or may not be smaller than the
nominal yield stress of the material rY. The iteration giving rR is, like
all the other iterations, a linear elastic FE analysis and the computed
value rR is proportional to the applied load PD, i.e.
rR ¼ bPD; ð9Þ
bbeing the constant of proportionality evaluated at the Rth (final) FE
analysis. A lower bound on the limit load can then be estimated by



956 A.A. Pisano, P. Fuschi / Composites: Part B 42 (2011) 949–961
simply observing that at the limit load level, say at load PL, the max-
imum stress has just to reach the yield value rY (at least in a region
of the FE mesh) all the other stress values nowhere exceeding the
yield stress. Such an admissible stress field for the load PL, can then
be generated from the final ‘‘compensated’’ Rth FE elastic analysis if
we set:

rY ¼ bPL: ð10Þ

Rearranging and substituting for b by (9) gives:

PL ¼
rY

b
¼ rY

PD

rR
; ð11Þ

which corresponds to the highest load such that the final compen-
sated stress in the elastic reduction procedure, rR, just reaches
yield.

It is worth to note that, as suggested in Mackenzie and Boyle
[36], the EC procedure can be applied only within ‘‘critical regions’’
identified by the elements with effective stress greater than the
yield one, i.e. with r#e > rY. The elastic moduli within such ele-
ments is then adjusted according to:

EðiÞ#e ¼ Eði�1Þ
#e

rY

rði�1Þ
#e

; ð12Þ

that is in proportion to the yield stress instead of the nominal
stress as in Eq. (8). Another alternative concerns the value of
the load PD. The latter can be set assuming a value above that
for the first yield, say PY; then the elastic moduli is corrected only
for those FEs with effective stress above yield (i.e. with Eq. (12)),
and the final iteration is the one at which the compensated elas-
tically calculated stress rR just reaches (is below) the yield value
rY. The load is then increased and the reduction procedure re-
peated. Eventually further load increases will not allow compen-
sated stresses to be brought below yield. The final admissible
stress field corresponds to a given load level which is a lower
bound on the limit load. This requires the compensation proce-
dure to be applied incrementally in load, demanding more anal-
yses, but with a better bound. In this context a simplified
procedure which only requires analysis at one load level (50–
80% above that for first yield PY) has been devised for torispher-
ical pressure vessel heads in paper III of the trilogy by Mackenzie
and Boyle [36].

An enhanced version of the ECM has been recently presented in
Hamilton and Boyle [24] where the method is combined with a
generalised yield criterion for lower bound limit analysis of trans-
versely loaded thin plates. In this case a generalised plate yield sur-
face of Ilyushin-type is assumed and Eqs. (8) and (11), used for the
EC procedure and the estimation of the lower bound respectively,
are rephrased in the shape:

EðiÞ#e ¼ Eði�1Þ
#e

rn

Rði�1Þ
#e

; PL ¼ rY
PD

Rmax
; ð13Þ

where Rði�1Þ
#e is the yield function value evaluated for the (unaver-

aged) nodal stress resultant in element #e; Rmax is the maximum
yield function value in the FE plate model.

A modified ECM has been very recently proposed in Chen et al.
[13] dealing whit structures containing flaws. A remarkable discus-
sion on the convergence problem of the iterative ECM is firstly
carried on employing Banach’s contraction mapping theorem. A
modified ECM is then proposed either to deal with local collapse
modes or to avoid numerical singularities due to an over modifica-
tion of the stiffness of elements whose stresses approach to zero.

As observed in Section 1, the ECM shares many common char-
acteristics with the LMM being the ECM, from many aspects, the
precursor of the LMM. The use of varying elastic moduli or the
use of a sequence of elastic analyses (remember Remark 2 at Sec-
tion 4.1) to mimic inelastic processes are, among other, common
peculiarities of the two methods. However, to the authors’ opinion,
the two methods maintain their own originality and independence.
The ECM is indeed strictly related to the concept of stress redistri-
bution eventually aimed at producing an admissible stress field for
the lower bound theorem. It then appears naturally oriented to a
static approach of limit analysis. The LMM, also framable as a non-
linear programming technique (see e.g. Ponter and Carter [43], Bar-
rera et al. [6]), is instead naturally related to the kinematic
approach of limit analysis being able to construct a compatible col-
lapse mechanism. Renouncing to examine and compare thoroughly
the two methods, which is out of the scope of the present paper,
but grounding on Remark 5 at Section 4.1, i.e. taking into account
that the PLB given by the LMM is actually a lower bound to the com-
puted minimum upper bound, it is of interest to evaluate a lower
bound also via the ECM. The latter approach is obviously reinter-
preted on taking into account the improvements proposed in Ham-
ilton and Boyle [24], Chen et al. [13] and it is ‘‘adapted’’ to the yield
criterion here assumed for composite laminates in plane stress
conditions.

Taking into account Eq. (12), the Young moduli of the #eth ele-
ment, E#ej (j = 1, 2, 6 for the orthotropic material in use), are updated
only within selected zones, namely only within the FEs where
j re

#e j>j rY
#e j. Differently from the previous formulae of the ex-

pounded ECM, reference is made to the moduli of the stress vectors
in the stress space (r1, r2, r6). Referring again to Fig. 4, re

#e denotes
the stress vector representing the average elastic stress value com-
puted within the #eth element (his components are simply the aver-
aged values of the stress components measured at the Gauss points
of the element); rY

#e denotes the corresponding stress at yield mea-
sured on the direction re

#e= j re
#e j. Keeping the formalism of Eq. (12),

the Young moduli within the #eth element (where j re
#e j>j rY

#e j)
and at the (i)th elastic analysis are adjusted according to:
EðiÞ#ej :¼ Eði�1Þ
#ej

rY
#e

��� ���ði�1Þ

re
#e

�� ��ði�1Þ

264
375

2

; ð14Þ
where it is worth noting that the value of the stress at yield pertains
to the current element and to the current elastic analysis while the
square of the updating ratio is assumed to improve the convergence
rate.

A lower bound to the collapse load multiplier is then computed
via Eq. (11) with minor modifications, precisely by:
PL : ¼j rY
R j

PD

j rR j
; ð15Þ
where rR is the maximum stress detected in the whole mesh, rY
R is

the corresponding stress at yield (i.e. the stress lying on the Tsai–
Wu type surface measured on the direction rR/jrRj); PL and PD are
load multipliers of a unitary reference load P. The first sequence
of elastic analyses is carried on with an arbitrary value of PD, the
moduli E#ej are updated in all the FEs and rR is the lowest value at-
tained in the mesh which is not reduced by further modifications of
the elastic moduli. This first sequence produces a PL of first tenta-
tive, say P0L. A second sequence is then carried on with a PD > P0L,
with elastic moduli updated only within the FEs where
j re

#e j>j rY
#e j and the final iteration (the R�th) is the one at which

the compensated stress rR just reaches (is below) the yield value rY
R .

Further sequences are then carried on with increased value of PD

and the reduction procedure repeated till further load increases
do not allow the compensated stress rR to be brought below yield.
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5. Estimation of the load bearing capacity of a pinned-joint

The LMM, in the shape given in Section 4.1, is applied to the
mechanical problem posed in Section 2 (see also Fig. 1) to evaluate
an upper and a lower bound to the collapse load multiplier. A lower
bound evaluation is also carried out via the ECM in the shape sta-
ted at the end of Section 4.2. Reference is made to the work of Wu
and Hahn [61], where several data and experimental results are re-
ported for a pin-loaded plate in plane stress conditions.

The action of the pin inside the hole has been assumed, as ex-
plained in Section 2, as a cosine load normal distribution Ti (refer
again to Fig. 1b). The plate, made of glass–fiber/vinyl–ester com-
posite material fabricated by vacuum-assisted resin-transfer
moulding, is indeed modelled as a symmetric quasi-isotropic lam-
inate whose mechanical characteristics, in terms of strength values
and elastic moduli, are reported in Table 2.

All the elastic analyses have been carried out using the com-
mercial FE code Adina [1], while a Fortran main program has been
developed to perform the iterative procedures either of the LMM or
of the ECM. In the former method the Fortran code accomplishes
also the matching at each Gauss point of each FE. Due to the sym-
metry of the problem with respect to the longitudinal axis, only
one half of the plate has been analyzed using a FE mesh of the type
shown in Fig. 5 with a total number of elements ranging between
350 and 550 isoparametric shell elements with 16 nodes and
16 GPs per element. The number of utilized FEs has been chosen
depending on the geometry of the modelled test to obtain an accu-
rate elastic FE solution; a finer mesh has been always employed
around the fastener hole. Moreover, the utilized element allows
to specify an orthogonal material axes system, the principal direc-
Table 2
Mechanical parameters of the composite laminate.

Elastic Moduli (GPa) and Poisson ratio E1 E2 G12 m12

49.8 6.9 31.9 0.3

Strengths (MPa) Yt = Xt Yc = Xc S
664.3 385.1 64.6

yz

Fig. 5. Finite element model of the pin-loaded plate of Fig. 1: a number of
(isoparametric 16 nodes/16 GPs) shell elements ranging between 350 and 550 has
been adopted for the run tests to assure, for each test, an accurate elastic FE
solution.

Table 3
Pin-loaded plate of Fig. 1: experimental bearing strength values and failure modes agains

Specimen dimensions Experimentala

Specimen number D (mm) W/D E/D t (mm) rBRU (MPa) Fai

1 6.35 4 6 2.32 496 T
2 6.35 8 4 2.27 522 B/S
3 6.35 8 6 2.28 439 B
4 12.70 4 3 1.15 281 B

a After Wu and Hahn [61].
tions of orthotropy being 1 � y and 2 � z. Finally, the applied refer-
ence load P has been assumed equal to 1 kN.
5.1. Numerical versus experimental findings: Validation

Among the experimental tests on different prototypes reported
in Wu and Hahn [61] only four have been numerically reproduced.
The chosen tests have been selected as cases-study exhibiting the
typical collapse joint mechanisms. No significant further inquiry
can be gained from numerical simulation of the whole set of labo-
ratory tests given in the above quoted paper. In order to better
understand the reliability of the proposed procedure additional
simulations and analyses are undoubtedly necessary. A parametric
analysis should be performed in order to investigate the influence
of connection geometry, material properties, type of lamination
(and consequent ‘‘homogeneization’’ performed) as well as the
influence of testing procedure. A comparison with a step-by-step
elasto-plastic analysis could be also useful. Nevertheless, to the
Authors’ opinion, such analyses have to be performed on proto-
types whose both manufacturing process and testing procedure
are fully known. This is actually the object of an ongoing research
program foreseing additional simulations and comparison with
experimental, or numerical alternative, findings carried on proto-
types manufactured and tested by the Authors. The present study
is just a first attempt to apply a numerical limit analysis approach
for the load bearing capacity evaluation of pinned joint connection
in orthotropic laminates; the few experimental data get from the
literature have then been chosen just to check the applicability
of the proposed approach.

The obtained results are reported in Table 3 together with the
experimental findings for sake of comparison. As said, the first
three tests have been chosen mainly because they exhibit three
different collapse mechanisms, the fourth one, together with the
third one, is also useful to compare the performances of the
LMM and the ECM for the lower bounds evaluation. The compar-
ison between the experimental findings and the numerical pre-
dictions shown in Table 3 is made in terms of ultimate bearing
strength, namely rBRU, defined as the ‘‘maximum stress reached
before a reduction in stress occurs for the first time’’. This bear-
ing strength is given by the ratio between the load at failure, say
Pf, and the product of the hole diameter times the plate thick-
ness: rBRU: = Pf/(D � t). Table 3 reports, for the considered speci-
mens: the geometry; the experimental values of rBRU together
with the experimentally observed failure mechanisms; the pre-
dicted rBRU values given by the present analysis via LMM and
via ECM. In particular these latter (three) values have been com-
puted at last iteration as: PUBP/(D � t), PLBP/(D � t) and PLP/ (D � t),
respectively. The computed lower and upper bounds to the col-
lapse load multiplier are also plotted against the experimentally
detected collapse load multiplier in Figs. 6a and b and 7a and b
versus the iteration number, each iteration corresponding to an
elastic FE analysis of the plate.

By inspection of the obtained results, the ability of the proposed
approach of bracketing the real collapse load value appears to be
t lower and upper bound predicted bearing strength values.

Prediction by LMM Prediction by ECM

lure mode Upper rBRU (MPa) Lower rBRU (MPa) Lower rBRU (MPa)

520 387 302
518 443 315
532 516 286
385 362 209
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Fig. 6. Values of the upper (PUB) and lower bounds (PLB and PL) to the collapse load
multiplier versus iteration number; numerical results (solid lines with symbols)
against collapse experimental treshold (dashed lines) for: (a) specimen #1; (b)
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quite good for tests #1 and #2 of the examined joint. The ECM,
used to evaluate the lower bound PL, seems to be more, perhaps
too much, conservative requiring sometimes several analyses to at-
tain the final ‘‘compensated’’ value as shown in Fig. 6b. Neverthe-
less, the results obtained for tests #3 and #4 clearly show that the
PLB (lower bound computed via LMM), being actually a lower
bound to the least upper bound (see also Remark 5 at Section 3.2),
might be above the experimentally detected collapse load multi-
plier, as shown in Fig. 7a and b. For these tests indeed the PL value
appears to be the only significative for design purposes. Far from
giving a definitive direction, but grounding on the results obtained
for the examined problem, a possible design methodology, ori-
ented to estimate the load bearing capacity of a pinned-joint com-
posite plate, seems to be the one which evaluates an upper and a
lower bound to the collapse load; the former via the LMM, the lat-
ter via the ECM.

In all cases a monotonic rapid convergence of the PUB sequence
is observed as expected by the present LMM, see Remark 1 at
Section 4.1. It is worth to say that the good performance of the pro-
posed approach, confirmed in many of the run tests, drastically re-
duces when three-dimensional or through-thickness effects play a
major role in the mechanical behaviour of the specimen. Such ef-
fects are obviously not considered with the present 2D formula-
tion. Indeed, the same values of rBRU obtained for prototypes
having the same W/D and E/D ratios but with different thickness
are consistent with the 2D FE analysis but contradict the experi-
mental evidences. To this concern it is to observe that a different
thickness implies a different stacking sequence of the laminate lay-
ers that can affect the mechanical characteristics of the laminate.
To the authors’ opinion a good strategy could be a LMM applied
layer-by-layer, i.e. by using multilayer FEs so carrying out the
matching taking into account the stacking sequence of the speci-
men. The use of multilayer FEs should give some benefits also to
the stress redistribution procedure of the EC approach. Another
essential need is to test, for each prototype, a statistically more sig-
nificative number of specimens.

Two further comments concern the ECM here employed; pre-
cisely, with reference to the plots of Fig. 8a and b pertinent to spec-
imen #1, the following can be observed. The sequences of elastic
analyses carried on for the PL evaluation can be repeated at increas-
ing load levels PD � P (P = 1 kN) obtaining, as observed by who con-
ceived the method, increasing values of the lower bound
approaching the collapse load multiplier; see Fig. 8a where the PL

values for three different design loads are plotted. Small further in-
creases of PD can however require a very high number of further
iterations (that is of elastic analyses of the specimen) to attain a
‘‘compensated’’ admissible solution so reducing the competitive-
ness of the direct method with respect to a step-by-step elasto-
plastic FE analysis. On the other hand, as shown in Fig. 8b, the
use of a squared updating ratio as the one proposed in Eq. (14)
seems to improve considerably the convergence rate.

5.2. The ultimate behaviour: collapse mechanisms

As observed in Section 2, the prediction of the collapse mecha-
nism of the joint is undoubtedly a crucial goal. In Figs. 9a and b, 10a
and b and 11a and b are plotted the collapse mechanisms predicted
by the LMM for specimens #1, #2 and #3 respectively. The mech-
anisms are here individuated by the band plots, at last iteration, of
the node displacement components. In particular: Fig. 9a and b
show net tension failure mode, Fig. 10a and b a combined bear-
ing/shear-out failure mode and Fig. 11a and b a bearing failure
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mode, all in agreement with the experimental observed modes re-
ported in Table 3 for the run examples. These results are obviously
very encouraging also for the pretty good definition of the collapse
zone.
6. Concluding remarks and future research

A typical problem of composite structural elements such as the
evaluation of the strength as well as the prediction of the failure
mechanism of joints between composite plates has been ad-
y 

z 

(a)

(b)

Fig. 9. Pin-loaded plate of Fig. 1, collapse mechanism of net-tension
dressed. The problem has been treated in a simplified manner that
is in terms of evaluation of an upper and a lower bound to the col-
lapse (failure) load multiplier. An approach based on limit analysis
theory has been proposed.

From a wider point of view, the expounded approach concerns
limit analysis of a class of anisotropic structures made of a material
whose constitutive behaviour can be governed by a yield criterion
expressed by a quadratic (strictly convex) stress function. In the
present study the material obeys, by hypothesis, to a Tsai–Wu type
yield condition, defined as a second-order tensor polynomial form
of the Tsai–Wu failure criterion for composite laminates in plane
stress conditions. The lack of associativity, here overcome by a
non standard limit analysis approach, makes impossible the defini-
tion of a collapse load multiplier and obliges to search for an upper
and a lower bound to it. The knowledge of such bounds as well as
the evaluation of the gap between them is obviously essential for
design purposes.

The above upper and lower bounds to the collapse load have
been evaluated via two well known numerical procedures for limit
analysis which also share common roots, namely: the Linear
Matching Method and the Elastic Compensation Method. Both proce-
dures have been adapted to the assumed yield condition introduc-
ing some novelties. The former, rephrased in a dimensionless stress
space, gives rise to an iterative scheme furnishing, at each iteration,
a lower and an upper bound to the limit load multiplier. The latter,
here devoted to a lower bound evaluation, has been formulated in
terms of stress vectors suggesting some changes which seem to
improve the convergence rate. The two procedures make use of se-
quences of elastic analyses so resulting easy to handle via any com-
mercial finite element code suitably driven by an home-made
subroutine (here implemented in Fortran).

A pin-loaded plate, under plane stress conditions, has been ana-
lyzed and the obtained results have been compared with few exper-
imental ones get from the literature. The numerical findings, at least
for the examined problem, are quite promising showing the potenti-
alities of the proposed methodology and its competitiveness with re-
spect to a burdensome step-by-step nonlinear analysis. An effective
strategy for design purposes seems the one which evaluates an
upper bound via the LMM and a lower bound via the ECM, such
choice exhibits, at least in the run examples, a good ability of brac-
keting the collapse load value detected via laboratory tests. More-
over, the results obtained in terms of collapse mode prediction of
the analyzed prototypes are indeed very encouraging either for the
very good agreement with the experimental findings or for the accu-
rate localization of the collapse zone.
type for specimen #1: (a) y-displacements; (b) z-displacements.



y 

z 

(a)

(b)

Fig. 10. Pin-loaded plate of Fig. 1, collapse mechanism of bearing/shear-out type for specimen #2: (a) y-displacements; (b) z-displacements.
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Fig. 11. Pin-loaded plate of Fig. 1, collapse mechanism of bearing type for specimen #3: (a) y-displacements; (b) z-displacements.
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Some numerical findings show the need of investigations to
take into account three-dimensional effects revealed by the exper-
imental evidences and here disregarded by a 2D FE formulation.
Further studies are certainly needed; a parametric analysis or an
incremental elasto-plastic analysis could be performed to investi-
gate the influence of manufacturing and testing process of the
specimens or to get alternative numerical findings. A possible fu-
ture step forward could also be a better FE-modeling of the com-
posite laminate whose mechanical characteristics can be affected
by the stacking sequence of the fiber layers. The idea is to make
use of multilayer 2D elements so performing the expounded
numerical procedures at the layer prototype level. Another crucial
task is the definition of apposite experimental tests on prototypes
suffering the same load conditions, but having different geometry
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and/or fabricated with a different manufacturing technology. To
the authors’ opinion, the full reliability on a methodology as the
one here proposed can be achieved only by comparison with a sta-
tistically meaningful number of experimental results. These are, at
present, the main targets of an ongoing research work being this
study just a first, but not trivial, step for the numerical limit anal-
ysis of mechanically fastened joints in composite laminates.
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