

MODEL SLICING

• Slicing is used to reduce the size of programs by removing those statements that do not contribute to the values of specified variables at a given program location.

PRINCIPLE OF MODEL SLICING :

- The act of converting a 3D model into a set of instructions for the 3D printers is called Slicing.
- Quite literally, it 'slices' the 3D model into thin layers, and further determine how each layer should be printed (the tool path) to get minimum time, best strength.

IMPORTANTS OF MODEL SLICING

- Slicing is an essential step in 3D printing that's characterized by the use of software to convert an object model into instructions for a 3D printer.
- The software essentially slices the object model into multiple layers.
- Each of these layers are then given values that denote the way in which it should be built.

TOOL PATH GENERATION

• Toolpaths for additive manufacturing are **usually generated from three-dimensional models in the STL format**. A series of slicing perpendicular to the orientation direction (usually the z direction) is performed. A sliced layer contains at least one polygon describing cross-sections of the objects to be printed.

PURPOSE OF TOOL PATH GENERATION IN 3D PRINTING :

Toolpath optimization for filament fused deposition. For fused filament fabrication, the design of the toolpath takes a crucial role as the toolpath of filament alignment has a significant influence on the behavior of 3D printed models, in both surface quality [24], [25] and mechanical strength [26], [27], [28].

TOOL PATH GENERATION

TECHNIQUES USED IN TOOL PATH GENERATION :

- The key technology of tool path generation included the,
- > Step length selection.
- > Step distance selection.
- > Interference avoidance.

The process of machining a golf-ball-like spherical surface was divided into turning and milling.

SOFTWARE FOR AM

SOFTWARE USED IN AM :

• Siemens Digital Industries Software provides all the necessary capabilities for additive manufacturing, from design to print to post-print validation.

SOFTWARE FOR AM

SOFTWARE CURRENTLY USED FOR AM :

- Bluestreak.
- Infor CloudSuite Industrial (SyteLine).
- MaterialCenter. MaterialCenter is a materials lifecycle management software that helps link the material specialists to mechanical simulation.
- E2 Shop System.
- Materialise Streamics.
- SYSPRO.
- SAP Digital Manufacturing.
- FactoryLogix.

thank you