

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) 19ASE304/ Heat Transfer Unit -2/ Laminar flow over flat plate and flow through pipes

Laminar Flow Over a Flat Plate

Description:

- In laminar flow over a flat plate, the fluid flows in parallel layers with minimal mixing between layers.
- This scenario is often analyzed in the boundary layer regime, where the flow starts from a no-slip condition at the plate and gradually develops.
 - Boundary Layer: The layer of fluid close to the plate where velocity changes from zero (at the plate) to free stream value.
 - Nusselt Number (Nu): Dimensionless number that represents the ratio of convective to conductive heat transfer. For laminar flow over a flat plate, it can be expressed as Nu = 0.332 · Re^{1/2} · Pr^{1/3} where Re is the Reynolds number and Pr is the Prandtl number.
 - Reynolds Number (Re): $\text{Re} = \frac{U_{\infty}L}{\nu}$, where U_{∞} is the free stream velocity, L is the characteristic length, and ν is the kinematic viscosity.
 - Prandtl Number (Pr): Pr = ^ν/_α, where α is the thermal diffusivity.

Laminar Flow Through Pipes

Description:

- In laminar flow through pipes, fluid moves smoothly in concentric layers, with the highest velocity at the center of the pipe and zero velocity at the pipe wall.
 - Hydrodynamic and Thermal Entry Length: The length over which the flow transitions from a developing to a fully developed state. For laminar flow, this is longer than in turbulent flow.
 - Nusselt Number (Nu): For laminar flow in a pipe with a constant wall temperature, it can be given as Nu = 3.66 + <u>0.0658 · Re·Pr</u> <u>1+0.04 · (Re·Pr)^{2/3}</u>.
 - Reynolds Number (Re): For flow in a pipe, Re = <sup>D_h·U_{avg}, where D_h is the hydraulic diameter, and U_{avg} is the average velocity.

 </sup>
 - Prandtl Number (Pr): Same as above.