Informed Search



INFORMED SEARCH

All the previous searches have been blind searches .They make no use of any
knowledge of the problem

When more information than the initial state , the operator , and the goal test
is available, the size of the search space can usually be constrained.

HEURISTIC INFORMATION:

Information about the problem (the nature of the states, the cost of transforming from one
state to another , the promise of taking a certain path, and the characteristics of the
goals).can sometimes be used to help guide the search more efficiently.

Information in form of heuristic evaluation function=f{n,g),a function of the
nodes n, and/or the goals g.

They help to reduce the number of alternatives from an exponential number to a polynomial
number and , thereby , obtain a solution in a tolerable amount of time,

Dr. Amit Kumar, Dept of CSE, JUET, Guna



Heuristics

A heuristic is a rule of thumb for deciding which choice
might be best

There is no general theory for finding heuristics,
because every problem is different

Choice of heuristics depends on knowledge of the
problem space

An informed guess of the next step to be taken in
solving a problem would prune the search space

A heuristic may find a sub-optimal solution or fail to
find a solution since it uses limited information

[n search algorithms, heuristic refers to a function that
provides an estimate of solution cost

SE. JUET. Gur



The notion of Heuristics

Heuristics use domain specific knowledge to
estimate the quality or potential of partial
solutions.

Example:
Manhattan distance heuristic for 8 puzzle.
Minimum Spanning Tree heuristic for TSP.



The 8-puzzle

2 8 3 1 2 3
1 6 4 8 4
7 5 o
Imtial State 7 6 5 Goal state

Heuristic Fn-1 : Misplaced Tiles Heuristics is the number of tiles out of place.

The first picture shows the current state n, and the second picture the goal state.

hin) = 5 because the tiles 2, 8, 1, 6 and 7 are out of place.

Heuristic Fn-2: Manhattan Distance Heuristic: Another heuristic for 8-puzzle is the
Manhattan distance heuristic. This heuristic sums the distance that the tiles are out of
place. The distance of a tile is measured by the sum of the differences in the x-
positions and the y-positions.

For the above example, using the Manhattan distance heuristic,
hin)=1+1+0+0+0+1+]+2=6

This piece will have to be moved at least that many times to get it to where it belongs

Suppose, from a given position, we try every possible single move (there can be up to
four of them), and pick the move with the smallest sum

‘‘‘‘‘‘

o . e Amit i, Deptol CSE, JUET Gour
This is a reasonable heuristic for solving the 8-puzzle



The Informed Search Problem

* Given [S,s,0,G,h] where
— S is the (implicitly specified ) set of states.
— s 1s the start state.

— O is the set of state transition operators each having
some cost.

— G is the set of goal states.

— h() 1s a heuristic function estimating the distance to a
goal.

* To find :

— A min cost seq. of transition to a goal state .



Hill Climbing

 Hill climbing is a variant of Generate and test
in which feedback from test procedure is used
to help the generator decide which direction to
move in search space.

* Feedback is provided in terms of heuristic
function



HILL CLIMBING SEARCH

Evaluate the initial state. If it is a goal state then return it and quit.
Otherwise, continue with initial state as current state.

Loop until a solution is found or there are no new operators left to be
applied in current state:
— Select an operator that has not yet been applied to the current state
and apply it to produce a new state
— Evaluate the new state:
* if it is a goal state, then return it and quit
* if it is not a goal state but better than current state then make
new state as current state
*if it is not better than current state then continue in the loop



[t is a simply a loop that continually moves in
the direction of increasing value.

The algorithm does not maintain a search tree,
so the node structures need only record the
state and its elevation which denote by
VALUE.

[t terminates when it reaches a “peak” where
no neighbor has a higher value.

When there 1s more than one best successor
choose from, the algorithm can select them at
random.



Hill Climbing Example

* Goal state : hand k

* Local minimum: A-> F ->
G

* Solution:
- ALK
-A,FE LK




Steepest-Ascent Hill Climbing
(Gradient Search)

* Considers all the moves from the current state.

* Selects the best one as the next state.



Steepest-Ascent Hill Climbing
(Gradient Search)

Evaluate the initial state. If it is a goal state then return it and quit. Otherwise,
continue with initial state as current state.
Loop until a solution is found or a complete iteration produces no change to current
state:
- let SUCC be a state such that any possible successor of the
current state will be better than SUCC (the worst state).
- For each operator that applies to the current state do:
* Apply any operator and generate new state
* evaluate the new state:
* if it is a goal state, then return it and quit
* if it is not a goal state, compare it to SUCC.
If it is better than set SUCC to this state
If it is not better than leave SUCC alone
*if SUCC is better than the current state then set the current state to SUCC.

Dy Amit Kum ept of CSE, JUET, G



DRAWBACK

— Local maxima: A local maximum is a peak that is
higher than each of its neighboring states, but lower
than the global maximum. Once a local maximum
peak the algorithm is halt even though the solution
may be far from satisfactory.

— Plateau: A plateau is an area of the state space
landscape where the evaluation function is flat. It can
be a flat local maximum , from which no uphill exit
exists . The search will conduct a random walk.

— Ridges: A ridge is a special kind of local maximum. It
is an area of the search space that is higher than
surrounding areas and that itself has a slope (which
one would like to climb). But the orientation of the
high region, compared to the set of available moves
and the directions in which they move, makes it
impossible to traverse a tidgé by single moveés.



Hill Climbing: Disadvantages

Ways Out

Local maximum :Backtrack to some earlier node and try going in a

different direction.

Plateau: Here make a big jump to some direction and try to get to
new section of the search space.

Ridge: Here apply two or more rules before doing the test i.e.,
moving in several directions at once.

Hill climbing is a local method: . .
Decides what to do next by looking only at the “immediate™
consequences of its choices.

Global information might be encoded in heuristic functions.

FCSE.JUET. G



Hill Climbing: Disadvantages

Start Goal

o O|0O| >
> || O | O

Blocks World



Hill Climbing: Disadvantages

Start Goal

o O|0O| >
> || O | O

Blocks World

Local heuristic:

+1 for each block that is resting on the thing it is supposed to
be resting on.

—1 for each block that is resting on a wrong thing.

SE.JUET. Gur



Hill Climbing: Disadvantages

0 2

o O |0 | >
O




Hill Climbing: Disadvantages

D 2

Cc

B A
A 0

0

D
C C D C 0
B B A B A D




Hill Climbing: Disadvantages

Start A Goal D
-6 6
D C
C B
B A
Blocks World

Global heuristic:

For each block that has the correct support structure: +1 to
every block in the support structure.

For each block that has a wrong support structure: -1 to
every block in the support structure.



Hill Climbing: Disadvantages

opl| -3

c

B||A
Al <8

2
D
=

C c||D C
B B||A B||A|[|D




One solution with Global heuristic

h(1l)=-6 h(2)=-3 h(3)=-1 h(4)=0

w.”,,
J
0
J

C
A B A D B A D C
D E O
C c -~ <: n
: A D A D C

h(7) = 46 h(6) = +3 h(5) = +1



Hill Climbing: Conclusion

* Can be very inefficient in a large, rough
problem space.

* Global heuristic may have to pay for
computational complexity.

* Often useful when combined with other
methods, getting it started right in the right
general neighbourhood.



Simulated annealing search

A hill-climbing algorithm that never makes “downhill”
moves towards states with lower value (or high cost) is
guaranteed to be incomplete , because it can get stuck on a
local maxima.

* Instead of starting again randomly when stuck on a local
maximum , we could allow the search to take some
downhill steps to escape the local maximum. This is the
idea of simulated annealing.

* Innermost loop of simulated annealing is quite similar to
hill climbing . Instead of picking the best move, however , it
picks a random move.

* Lowering the chances of getting caught at a local maximum,
or plateau, or a ridge.



Simulated Annealing

* A variation of hill climbing in which, at the
beginning of the process, some downhill
moves may be made.

* To do enough exploration of the whole space
early on, so that the final solution is relatively
insensitive to the starting state.



Simulated Annealing

Physical Annealing

* Physical substances are melted and then gradually
cooled until some solid state is reached.

* The goal is to produce a minimal-energy state.

* Annealing schedule: if the temperature 1s lowered
sufficiently slowly, then the goal will be attained.

* Nevertheless, there is some probability for a
transition to a higher energy state: e 2F/T,



Simulated Annealing

Evaluate the initial state. If it is a goal state then return it and quit. Otherwise,
continue with initial state as current state.

Initialize best-so-far to the current state.
Initialize T according to the annealing schedule.

Loop until a solution is found or there are no new operators left to be applied in
current state:

1. Select an operator that has not yet been applied to the current state and apply it to
produce a new state

2 Evaluate the new state, compute:
AE = Val(current state) - Val(new state)
* if new state is a goal state, then return it and quit

* if it is not a goal state but better than current state then make new state as
current state

* if it is not better than current state then make new state as current state
with probability p* = e * -AE/T. This step is usually implemented by invoking a
random number generator to produce a number in the range of [0,1]. If the number is
less then p’, then the move is accepted ,otherwise do nothing.

3. Revise T as necessary according'to the amnealing'schedule.



Simulated Annealing Example

Place: where each tile I should go. Place(i)=i. NELE
Position: where it is at any moment. 8l 12
Energy: sum(distance(i, position(i))), for i=1,8. Initial Sta/ 3|58

Energy(solution) =0

Random neighbor: from each state there are at most 4 possible moves. Choose one randomly.
T = temperature. For example, we start with T=40, and at every iteration we decrease it by 1.
If T=1 then we stop decreasing it.

Energy = (2-1)H(6-2)H(7-3)+(4-1)+(8-5) +(6-4)+(7-3)+(9-8)= 1 +4+4+3+3+2+4+
1 =22
Following are the neighbors

4 7 4 |1|7 4 |1 |7 4 |1 |7
6|1 |2 6|2 6|2 6| 5|2
3|65 |8 3|565|8 3|5 |8 3 8
Energy= 25 Energy = 21 Energy= 21 Energy = 19

Suppose T = 40. Then the probability:of the first neighbor is ¢42%2240 = (0 9277 = 92.77%



Best-First Search

* Depth-first search: not all competing branches
having to be expanded.

* Breadth-first search: not getting trapped on dead-
end paths.

— Combining the two is to follow a single path
at a time, but switch paths whenever some
competing path look more promising than the
current one.



Best-First Search




Best-first Vs Hill Climbing

hill climbing

* In hill climbing, one move

is selected and all the others
are rejected and are never
reconsidered.

It stop if there are no
successor states with better
values than the current state.

best-first search

one move is selected, but
the others are kept around so
that they can be revisited
later if the selected path
becomes less promising

the best available state is
selected in best-first search,
even if that state has a value
that is lower than the value
of the state that was just
explored.

fCSE JUET. G



Best-First Search

To get the path information, Each node will contain, in addition to a description of
the problem state it represents,

— an Indication of how promising it is,
— a parent link that points back to the best node from which it came,
— a list of the nodes that were generated from it.

Once the goal is found the parent link will make it possible to recover the path to
the goal.

The list of successors will make it possible, if a better path is found to an already
existing node, to propagate the improvement down to its successors.

We will call a graph of this sort an OR graph, since each of its branches represents
an alternative problem-solving path.

To implement such a graph-search procedure, we will need to use two lists of
nodes:

OPEN: nodes that have been generated, but have not examined. This is organized as
a priority queue in which the elements with the highest priority are those with the
most promising value of the heuristic function

CLOSED: nodes that have already been examined. It used, whenever a new node is
generated, check whether it has been generated before.

e Amit Komar, Dept of CSELJUET, G



Best-First Search
Algorithm

1. Start with OPEN containing just the initial state.

2. Until a goal is found or there are no nodes left on OPEN do:
I.  Pick the best node on OPEN.
I[I. Generate its successors.
[1I. For each successor do:

a. If it has not been generated before, evaluate it, add it to
OPEN, and record its parent.

b. If it has been generated before, change the parent if this
new path is better than the previous one. In that case,
update the cost of getting to this node and to any
successors that this node may already have.



Best-First Search

* Best-First Search

f(n) = g(n) + h(n)

v’ f(n) = measures the value of the current state (its “goodness”).
v' h(n) = the estimated cost of the cheapest path from node n to a goal state.

v’ g(n) = the exact cost of the cheapest path from the initial state to node n.



Traditional informed search strategies

* Greedy search:
f(n)=h(n) ; i.e. g(n) = 0. it means the estimated cost of the cheapest
path from node n to a goal state.

Neither optimal nor complete

* Uniform-cost search:
f(n)=g(n) ; i.e. h(n) = 0. it means the cost of the cheapest path from
the initial state to node n.

Optimal and complete, but very inefficient
* A* Search:

= f{n)=g(n)+h(n), search uses an “admissible™ heuristic function /that
takes into account the current cost g

— A heuristic function f{n) = g(n) + h(n) is admissible if ii(n) never
overestimates the cost to reach the goal.

f(n) never over-estimate the true cost to reach the goal state through
node n.

— Always returns the optimal solution path

[y Amit Kumar, Dept of CSE, JUET, G



Greedy Best First Search

State

Heuristic: h(n)

>

366

374

329

244

253

178

193

98

| T M M OO ™

0

ILUET, Gur

fi(n) = h (n) = straight-line distance heuristic




Greedy Best First Search

State

Heuristic: h(n)

>

366

374

329

244

253

178

193

98

| T M M OO ®

0

S ILIET. Ciur

fi(n) = h (n) = straight-line distance heuristic




Greedy Best First Search

State

Heuristic: h(n)

>

366

374

329

244

253

178

193

98

— | IO MM O|O|®

0

S ILIET. Ciur

fi(n) = h (n) = straight-line distance heuristic




Greedy Best First Search

State

Heuristic: h(n)

>

366

374

329

244

253

178

193

98

|l T|IO| MM OO

0

S ILIET. Ciur

fi(n) = h (n) = straight-line distance heuristic




Greedy Best First Search

State

Heuristic: h(n)

>

366

374

329

244

253

178

193

98

| T M MO|O| ™

0

ILUET, Gur

fi(n) = h (n) = straight-line distance heuristic




Greedy Best First Search

State

Heuristic: h(n)

>

366

374

329

244

253

178

193

98

| IO MM OO ™

0

S ILIET. Ciur

fi(n) = h (n) = straight-line distance heuristic




Greedy Best First Search

State

Heuristic: h(n)

>

366

374

329

244

253

178

193

98

| IO MO O™

0

ILUET, Gur

fi(n) = h (n) = straight-line distance heuristic




Greedy Best First Search

State

Heuristic: h(n)

>

366

374

329

244

253

178

193

98

| TI®| M MOl ®m

0

S ILIET. Ciur

fi(n) = h (n) = straight-line distance heuristic




Greedy Best First Search

State

Heuristic: h(n)

>

366

374

329

244

253

178

193

98

— | ElIO|MMO|O| ™

0

ILUET, Gur

fi(n) = h (n) = straight-line distance heuristic




Greedy Best First Search

State

Heuristic: h(n)

>

366

374

329

244

253

178

193

98

= T O mM M O|O|m

ILUET, Gur

fi(n) = h (n) = straight-line distance heuristic




Greedy Best First Search

@ Start

State

h(n)

>

366

374

329

244

253

178

193

98

= TGO M M O|lO|m




Greedy Search: Tree Search |state | hm)

>

366

374

329

244

253

178

193

98

| T O MmOl m




Greedy Search: Tree
Search

State

h(n)

>

366

374

329

244

253

178

193

98

| IT|IO|mM M OO




Greedy Search: Tree Search

State | h(n)

A 366

374

329

244

253

178

193

98

| T MM O|O|m




Greedy Search: Tree Seareh [

366

374

329

244

253

178

193

98

| T mMOlO|m™| >

[0]

Goal

dist(A-E-F-I) = 140 + 99 + 211 = 450

. Amit Kumar, Dept of CSE, JUET, Gun



Greedy Best First Search :
Optimal ? NO

@ Start State Heuristic: h(n)
g S 75 A 366
B 374
11 C 329
D 244
E 253
F 178
G 193
H 98
I 0
2 Goal fin) = I (n) = straight-line distance heuristic

o dist(AE-G-H-T) =140+80+97+101



Greedy Best First Search :

Optimal ?

Start State Heuristic: h(n)
18 75 A 366
B 374
111 .C 250
D 244
E 253
F 178
G 193
H 98
I 0

Goal fin) = h (n) = straight-line distance heuristic

r. Amit Kumar, Dept of CSE, JUET, Gun




Greedy Search: Tree Search
State | h(n)
Start A 366
@ B 374
D 244
E 253
F 178
G 193
H 98
I 0




Greedy Search: Tree Search

State | h(n)
A 366
B 374
D 244
E 253
F 178
G 193
H 98
I 0




Greedy Search: Tree Search
State | h(n)
A 366
B 374
D 244
E 253
F 178
G 193
H 98
I 0




Greedy Search: Tree Search

State | h(n)
A 366
B 374
D 244
E 253
F 178
Infinite Branch !
(250] é G 193
H 98
I 0




Greedy Search: Tree Search

[250]

11
[244]

Infinite Branch !

[250]
Not Complete

[244]

State | h(n)
A 366
B 374
D 244
E 253
F 178
G 193
H 98
I 0




Greedy Search: Time and Space
Complexity ?

Start
75

* Greedy search is not optimal.

* Greedy search is incomplete
without systematic checking of
repeated states.

* In the worst case, the Time and
Space Complexity of Greedy
Search are both O(b™)

Where b is the branching factor and m the maximum
Goal path length



Informed Search Strategies

A* Search

eval-fn: f(n)=g(n)+h(n)



A* (A Star)

* Greedy Search minimizes a heuristic 4(n) which is an
estimated cost from a node » to the goal state. However,
although greedy search can considerably cut the search
time (efficient), it is neither optimal nor complete.

* Uniform Cost Search minimizes the cost g(n) from the
initial state to n. UCS is optimal and complete but not
efficient.

* New Strategy: Combine Greedy Search and UCS to get an
efficient algorithm which is complete and optimal.



A* (A Star)

A* uses a heuristic function which combines g(n) and A(n)

fin) = g(n) + h(n)

g(n) is the exact cost to reach node » from the initial state.
Cost so far up to node n.

h(n) is an estimation of the remaining cost to reach the
goal.



o

Algorithm

Start with OPEN containing only the initial node. Set that node's g value to
0, its h' value to whatever it is, and its f' value to h' + 0, or h'. Set CLOSED
to the empty list.

Until a goal node is found, repeat the following procedure:
— If there are no nodes on OPEN, report failure.

— else, pick the node on OPEN with the lowest f' value. Call it BEST
NODE. Remove it from OPEN. Place it on CLOSED.

* See if BESTNODE is a goal node. If so, exit and report a solution
(either BESTNODE : if all we want is the node or the path that has
been created between the initial state and BESTNODE if we are
interested in the path).

* else, generate the successors of BEST NODE but do not set
BESTNODE to point to them yet. (First we need to see if any of
them have already been generated.) For each such SUCCESSOR, do
the following:

it Kum ept of CSE, JUET, G



a)

b)

Set SUCCESSOR to point back to BEST NODE. These backwards links
will make it possible to recover the path once a solution is found.

Compute g(SUCCESSOR) = g(BESTNODE) + the cost of getting from
BEST NODE to SUCCESSOR.

See if SUCCESSOR is the same as any node on OPEN (i.c., it has
already been generated but not processed).

If so, call that node OLD. Since this | node already exists in the
graph, we can throw SUCCESSOR away and add OLD to the list of
BESTNODE's successors. Now we must decide whether OLD's
parent link should be reset to point to BESTNODE. It should be if
the path we have just found to SUCCESSOR is cheaper than the
current best path to OLD (since SUCCESSOR and OLD are really the
same node). So see whether it is cheaper to get to OLD via its current
parent or to SUCCESSOR via BESTNODE by comparing their g
values. If OLD is cheaper (or just as cheap), then we need do nothing.
If SUCCESSOR is cheaper, then reset OLD's parent link to point to
BESTNODE. record the new cheaper path in g(OLD), and update f
(OLD).

1t Kum ept of CSE, JUET, G



d) If SUCCESSOR was not on OPEN, see if it is on CLOSED. If so, call the
node on CLOSED OLD and add OLD to the list of BESTNODE's
SUCCESSOTS.

— Check to see if the new path or the old path is better just as in step 2(c),
and set the parent link and g and f* values appropriately. If we have just
found a better path to OLD, we must propagate the improvement to
OLD's successors. This is a bit tricky. OLD points to its successors.
Each successor in turn points to its successors, and so forth, until each
branch terminates with a node that either is still on OPEN or has no
successors, So to propagate the new cost downward, do a depth-first
traversal of the tree starting at OLD, changing each node's g value (and
thus also its f' value), terminating each branch when you reach either a
node with no successors or a node to which an equivalent or better path
has already been found.

e) If SUCCESSOR was not already on either OPEN or CLOSED, then
put it on OPEN, and add it to the list of BESTNODE's successors.
Compute f(SUCCESSOR) = g(SUCCESSOR) + h'(SUCCESSOR)

1t Kum ept of CSE, JUET, G



A* (A Star)

fin) = g(n)y+h(n)




A* Search

Start State Heuristic: h(n)

>

366

374

329

244

253

178

193

98

| IO M M OO ®

0

Goal Sf(n) =g(n) + h (n)

g(n): is the éxact cost'to reach node n from the initial state.



A* Search: Tree Search

State | h(n)

>

366 @ Start

374

329

244

253

178

193

98

= Il | M| m| O] O| @




A* Search: Tree Search

State | h(n)

366

374

329

244

253

m|m| O] O ®™| >»

178

193

Il &

98 C[447] =118 + 329

E[393] = 140 + 253

—
(=]

B[449] = 75 + 374



State

h(n)

366

374

329

244

253

m|m| O] O ®™| >»

178

Il &

193

98

—

A* Search: Tree Search




State

h(n)

366

374

329

244

253

m|m| O] O ®™| >»

178

Il &

193

98

—

A* Search: Tree Search

ept of CSELJUET. G



State

h(n)

366

374

329

244

253

m|m| O] O ®™| >»

178

Il &

193

98

—

A* Search: Tree Search

et of CSECJUET. G



A* Search: Tree Search

State

h(n)

366

374

329

244

[447]

253

m| m| O O @w| »

178

Il &

193

98

—

Goal

ept of CSELJUET. G

[449]



A* Search: Tree Search

State

h(n)

366

374

329

244

[447]

253

m| m| O O @w| »

178

Il &

193

98

—

Goal

ept of CSELJUET. G

[449]



A* Search: Tree Search

State

h(n)

366

374

329

244

[447]

253

178

Il | m| m| O O @| >

193

98

—

Goal

ept of CSE,JUET, Gun

[449]



How good is A*?

* Memory usage depends on the heuristic function
— If g(N) = constant, H(n) = 0 then A* = breadth-first
— If h(N) is a perfect estimator, A* goes straight to goal
— ...but if h(N) were perfect, why search?

* Quality of solution also depends on h(N)

* It can be proved that, if h(N) is optimistic (never

overestimates the distance to a goal), then A* will
find a best solution (shortest path to a goal)



Estimation of h

h' Overestimates h h' Underestimates h




Conditions for optimality

* Admissibility
— An admissible heuristic
never ()\'()I'(".\'II.IN(H‘(’.\' the

* Admissibility

cost to reach the goal /Monotonicity

— Straight-line distance — The admissible heuristic h
hg, ;, obviously is an is consistent (or satisfies
admissible heuristic the monotone restriction) if

for every node N and every
successor N’ of N:
hN) < (NN + h(N)

« A*is optimal if h is (triangular inequality)

admissible or consistent
— A consistent heuristic is
admissible.

ept of CSE,JUET



Heuristic Evaluation

The Effect of Heuristic Accuracy on Performance

An Example: 8-puzzle



Admissible heuristics

E.g., for the 8-puzzle:

* h,(n) = number of misplaced tiles
* h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1
5 6 3 4
8 3 1 6 7
< hl(S) =7 Sicit Siake Goal State

* hy(S)=7

et of CSECJUET. G



Admissible heuristics

E.g., for the 8-puzzle:

* h,(n) = number of misplaced tiles
* h,(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

7 2 4 1
5 6 3 4
8 3 1 6 7
< hl(S) =78 Sicit Sidhe Goal State

o hy(S) =7 3+14+2+2+2+3+3+2 = 18

et of CSECJUET. G



Dominance

* Ifh,(n) = h,(n) for all n (both admissible)
* then /&, dominates A,
* h,1is better for search

Why? Self Study
* Typical search costs (average number of nodes expanded):

. A’(h,) =227 nodes
A'(h,) = 73 nodes

. A’(h,) = 39,135 nodes
A*(h,) = 1,641 nodes

) of CSEJUET, G



Problem Reduction

Goal: Acquire TV set

Pl i

Goal: Steal TV set

Goal: Earn some money

Goal: Buy TV set

AND-OR Graphs

Algorithm AO* (Martelli & Montanari 1973, Nilsson 1980)




Problem Reduction: AO*




When to Use Search Techniques

* The search space is small, and
— There are no other available techniques, or

— It 1s not worth the effort to develop a more efficient
technique

* The search space is large, and
— There is no other available techniques, and
— There exist “good” heuristics



Conclusions

* Frustration with uninformed search led to the idea
of using domain specific knowledge in a search so
that one can intelligently explore only the relevant
part of the search space that has a good chance of
containing the goal state. These new techniques
are called informed (heuristic) search strategies.

* Even though heuristics improve the performance
of informed search algorithms, they are still time
consuming especially for large size instances.



