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Time-Domain Analysis of Control Systems 

4.1 INTRODUCTION 

The ability to adjust the transient and steady-state response of a control system is a beneficial 

outcome of the design of a feedback system. Since time is used as an independent variable in 

most of control systems, it is usually of interest to evaluate the state and output responses with 

respect to time, or simply the time response. 

 

In the analysis problem we will use selected input signals to test the response of control system. 

This response will be characterized by a selected set of response measures. In this chapter, we 

will strive to delineate a set of quantitative performance measures that adequately represent the 

performance of the control systems. 

 

4.2 TIME RESPONSE AND TEST SIGNALS 

The time response of a control system is usually divided into two parts: the transient response and 

the steady-state response. Let y(t) denote the time response of a continues-data system; then, in 

general, it can be written as 
y(t) = yt(t) + yss(t) (4.1) 

where yt(t) denotes the transient response and yss(t) denotes the steady-state response. 

 

In control systems, transient response is defined as the part of the time response that goes to zero 

as time becomes very large. Thus yt(t) has the property 
lim yt (t) = 0 
t→ (4.2) 

The steady-state response is simply the part of the total response that remains after transient has 

died out. All real stable systems exhibit transient phenomena to some extent before the steady 

state is reached. 

 

In the design problem, specifications are usually given in terms of the transient and steady-state 

performance, and controllers are designed so that the specifications are all met by the design 

system. 

 

Since it is difficult to design a control system so that it will perform satisfactory for all possible 

forms of input signals, it is necessary, for purpose of analysis and design, to assume some basic 

types of test signals properly for the prediction of system's performance to other more complex 

inputs. 

 

1. Step-Function Input 
The step-function input represents an instantaneous change in the reference input. The 

mathematical representation of a step function of magnitude R is 
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 

 

r( t ) = 
R

 

0 

t  0 

t  0 

Mathematically, r(t) = Rus(t), where us(t) is the unit-step function. The step function is shown in 

Figure 4.1 (a). 

 

2. Ramp-Function Input 
The ramp function is a signal that changes constantly with time. Mathematically, a ramp function 

is represented by 

r(t) = Rtus (t) 
where R is a real constant. The ramp function is shown in Figure 4.1 (b). 

 

3. Parabolic-Function Input 
The parabolic function represents a signal that is one order faster than the ramp function. 

Mathematically, it is represented as 

r(t) = 
Rt2 

2 
us (t) 

The Parabolic function is shown in Figure 4.1 (c). 

 
Figure 4.1 Time-domain test input signals: (a) Step, (b) Ramp, (c) Parabolic 

 

4.3 UNIT-STEP RESPONSE AND TIME-DOMAIN SPECIFICATIONS 

For linear control systems, the time response is characterized by using the unit step-input. The 

response of the control system to the unit step-input is called unit-step response. Figure 4.2 

illustrate a typical unit-step response of a linear control system. 

 

With reference to unit-step response, the following performance criteria (parameters) are defined: 

 

1. Maximum overshoot 

Let ymax denotes the maximum value of y(t) and yss be the steady-state value of y(t) and ymax  yss. 

The maximum overshoot of y(t) is defined as, 

Maximum overshoot = ymax - yss 

Percent maximum overshoot = 
 

2. Delay time 

maximum overshoot 
 

 

yss 

× 100% (4.3) 

The delay time, td is defined as the time required for the step response to reach 50% of its final 

value. 



Page 3 

 

 

n n 

 

3. Rise time 
The rise time, tr is defined as the time required for the step response to rise from 10 to 90 percent 

of its final value. 

 

4. Settling time 
The settling time, ts is defined as the time required for the step response to reach and stay within a 

specified percentage (5%) of its final value. 

 
Figure 4.2 Step response of a control system 

 

Analytically, these quantities are difficult to establish, except for simple systems lower than the 

third order. 

 

4.4 TRANSIENT RESPONSE OF A PROTOTYPE SECOND-ORDER SYSTEM 

Although true second-order control systems are rare in practice, their analysis generally helps to 

form a basis for the understanding of analysis and design of higher-order systems, especially the 

ones that can be approximated by second-order systems. 

 

Consider that a second-order control system with unity feedback is represented by the block 

diagram shown in Figure 4.3. The open-loop transfer function of the system is 

 2 

G(s) = n 
 

 

s(s + 2n ) 
(4.5) 

where  and n are real constants. The closed-loop transfer function of the system is 

Y (s) 
 

 

 2 

= n  
 

(4.6) 

R(s) s2 + 2 s +  2 
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The characteristic equation of the prototype second-order system is obtained by setting the 

denominator of Eq. 4.6 to zero 

(s) = s2 + 2 s + 2 = 0 (4.7) 
 

As we shall see later, the system is stable (bounded output for bounded input) if the roots of the 

characteristic equation locate on the left half of s-plane, and marginally stable (oscillation for a 

bounded input) if the characteristic equation has simple roots on the imaginary axis with all other 

roots in the left half of s-plane. For an unstable (unbounded output for any bounded input) system 

the characteristic equation has at least one root in the right half of the s-plane or it has a repeated 

j roots. 

 

 

 

 

Figure 4.3 Prototype Second-order control system 

For a unit-step input, R(s) = 1/s, the output response is given as 

 
2 

Y (s) = n  (4.8) 
s(s2 + 2 s + ) 

n 

By taking inverse Laplace transform, we obtain the unit step response of the control system 

 

y(t) = 1 − 
e−nt 

sin(n t + cos −1  ) t  0 
 

(4.9) 
 

Figure 4.4 shows the unit-step response of the second-order system for various values of . It 

may be noted that the response becomes more oscillatory with larger overshoot as  decreases. 

Figure 4.4 Unit-step response of second-order system with various  values 

1 − 2 
1 − 2 

n 
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4.4.1 Damping Ratio and Damping Factor 

The effects of the system parameters  and n on the step response y(t) can be studied by 

referring to the roots of the characteristic equation in Eq. (4.7). The roots can be expresses as 

s1 , s2 = −n  jn 
 

(4.10) 

= − + j 

where  = n (4.11) 

and  = n (4.12) 

The physical significance of  and  is now investigated. As seen from Eq. (4.9) the factor 

 = n appears as a constant multiplied by t in the exponential term of the response y(t). 

Therefore,  controls the rate of rise or decay of the unit-step response y(t). In other words,  

controls the “damping” of the system and is called damping factor. The inverse of  , 1/ is 

proportional to the time constant of the system. When  = 1, the oscillations disappear and the 

system is said to be critically damped. Under this condition  = n. Thus, we can regard  as 

 = 
 

= 
 

actual damping factor (4.13) 

n damping factor at the critical damping 

When  < 1, the system is under-damped and when  > 1, the system is over-damped. 

 
4.4.2 Natural Undamped Frequency 

The parameter n is defined as the natural undamped frequency. As seen from equation (4.10), 

when  = 0, the roots of the characteristic equation are imaginary. Thus, the unit-step response of 

the system becomes purely oscillatory with angular frequency of n. For 0 <  < 1, the imaginary 

parts of the roots have the magnitude of the actual (damped) frequency of oscillation. 

Thus,  = n 

Figure 4.5 illustrates the relationships between the location of the characteristic equation roots 

and , , and n. 

 
Figure 4.5 The relationship between the characteristic equation roots and , , and  

1 − 2 

1 − 2 
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1 −  2 

1− 2 

n 

 

The effect of the characteristic equation roots on the damping of the second-order system is 

illustrated in Figure 4.6 

 

Figure 4.6 Step-response comparisons for various 

characteristic equation – root locations in the s-plane 

 
4.4.3 Analytical Expression for Maximum Overshoot 
By taking the derivative of Eq. (4.9) with respect to time t and setting the result to zero, we get 

dy(t) 
= 

n 

dt 
e−nt  

sin  . 1 − 2 . t (4.14) 

 

 n t = n n = 1,2,3,... 

 
From which we get t =

 n  

 
n = 1,2,3,... 

 
(4.15) 

n 
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For the unit-step responses shown in Fig. 4.4, the first overshoot is the maximum overshoot. This 

corresponds to n = 1 in Eq. (4.15). Thus, the time at which the maximum overshoot occurs is 

tmax = (4.16) 
 

With reference to Fig. 4.4, the overshoots occur at odd values of n, that is, n =1, 3, 5, …, and 

undershoots occur at even values of n. 

 

The magnitude of the overshoot and undershoots can be determined by subistituting Eq. (4.14) 

into Eq. (4.9). This results in y(t)max or y(t)min . Therefore 
 

maximum overshoot = ymax − 1 = e (4.17) 

and the percent maximum overshoot is 

 

percent maximum overshoot = 100e 

 
- 

 

 

 

 
(4.18) 

 

The relationship between the percent maximum overshoot and the damping ratio, given in Eq. 

(4.18) is plotted in Figure 4.7. 

 
Figure 4.7 The relationship between the percent maximum overshoot and the damping ratio 

 
4.4.4 Delay Time and Rise Time 

It is more difficult to determine the exact analytical expressions of the delay time td and rise time 
tr, and settling time ts. However, we can utilize the linear approximation 

t  
1 + 0.7 

d 


 0    1.0 (4.19) 
n 

1- 2 

 

 
n 

1 − 2 

− 

1− 2 
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1. tr and td are proportional to  and inversely proportional to n. 

2. Increasing (decreasing) the natural undamped frequency n will reduce (increase) tr and td. 

 

The plot of ntr versus  is shown in Figure 4.8. This relation can be approximated by a straight 

line over a limited range of : 

t = 
0.60 + 2.16 

r 


 0    1 (4.20) 
n 

 

Figure 4.8 Normalized rise time versus  for the prototype second-order system 

From this discussion, the following conclusions can be made: 

 

 

In regard to the settling time ts, it can be approximated as 

ts  
3.2 
 0    0.69 (4.21) 

 
and 

n 

t = 
4.5 

s 


 

 

  0.69 
 

(4.22) 
n 

 

We can summarize the relationships between ts and the system parameters as follows: 

 

 

 

1. For  < 0.69, the settling time is inversely proportional to  and n. A practical way of 

reducing the settling time is to increase n while holding  constant. 

2. For  > 0.69, the settling time is proportional to  and inversely proportional to n. Again, ts 

can be reduced by increasing n. 


