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4.1 STABILITY OF LINEAR CONTROL SYSTEMS 

The transient response of a feedback control system is of primary interest and must be investigated. 

A stable system is defined as a system which gives a bounded output in response to a bounded 

input. 

 

The concept of stability can be illustrated by considering a circular corn placed on a horizontal 

surface, Fig. 4.9 and Fig. 4.10. 

 
Figure 4.9 The stability of a cone 

 

Figure 4.10 Stability in the s-plane 
 

The stability of a dynamic system is defined in a similar manner. Let u(t), y(t), and g(t) be the input, 

output, and impulse response of a linear time-invariant system, respectively. The output of the 

system is given by the convolution between the input and the system's impulse response. Then 

y(t) = 0 u(t − )g( )d (4.23) 

This response is bounded (stable system) if and only if the absolute  value  of  the impulse 

response, g(t), integrated over an infinite range, is finite. That is 
 

0    
g( ) d   (4.24) 

Mathematically, Eq. (4.24) is satisfied when the roots of the characteristic equation, or the poles 

of G(s), are all located in the left-half s-plane. 



 

A system is said to be unstable if any of the characteristic equation roots locates in the right-half 

s-plane. When the characteristic equation has simple roots on the j-axis and none in the right- half 

plane, we refer to the system as marginally stable. 

 

The following table illustrates the stability conditions of linear continuous system with reference 

to the locations of the roots of the characteristic equation. 

 
Stability Condition Roots Values 

Stable All the roots are in the left-half s-plane 

Marginally stable or marginally unstable 
At least one simple root, and no multiple roots on 

the j-axis; and no roots in the right-half s-plane. 

Unstable 
At least one simple root in the right-half s-plane or 

at least one multiple-order root on the j-axis. 

Table 4.1 Stability Conditions of LTI System 

 

The following examples illustrate the stability conditions of systems with reference to the poles 

of the closed-loop transfer function M(s). 

 
20 

M (s) = 
(s + 1)(s + 2)(s + 3) 

 

Stable 

M( s ) =
 20( s +1)  

( s −1)( s 2 + 2s + 2 ) 

 

Unstable due to the pole at s = 1 

M (s) = 
20(s −1) 

(s + 2)(s2 + 4) 

Marginally stable or marginally unstable due 

to s = j2. 

M (s) = 
10

 
(s2 + 4)2 (s + 10) 

Unstable due to the multiple-order pole at 

s= j2. 

 
4.1.1 Methods of Determining Stability 

The discussion in the proceeding sections lead to the conclusion that the stability of linear time- 

invariant system can be determined by checking on the location of the roots of the characteristic 

equation. When the system parameters are all known, the roots of the characteristic equation can 

be solved by means of a root-finding computer program. For example the M-file roots(a) of 

MATLAB. 

 

For design purposes, there will be unknown or variable parameter embedded in the characteristic 

equation, and it will be feasible to use the root-finding programs. The method outlined below is 

well known for the determination of stability of LTI system without involving root solving. 

 
4.1.1.1 Routh-Hurwitz Criterion 

The Routh-Hurwitz criterion represents a method of determining the location of zeros of a 

polynomial with constant real coefficients with respect to the left and right half of the s-plane, 

without actually solving for the zeros. 



1 0 

n 

 

Consider that the characteristic equation of a linear time-invariant SISO system is of the form 

F (s) = an sn + a 
 
n−1 s

n−1 +L+ a s + a  = 0 (4.25) 

where all the coefficients are real. In order that Eq. (4.25) not has roots in the right half of 

s-plane, it is necessary and insufficient that the following conditions hold: 
 

 

However, these conditions are not sufficient, for it is quite possible that an equation with all its 

coefficients nonzero and with the same sign still may not have all the roots in the left half of the s-

plane. 

 

The first step in the Routh-Hurwitz criterion is to arrange the coefficients of the Eq. (4.25) as 

follows: 

s an an−2 an−4 L 

sn−1 an−1
 an−3 an−5 L 

Further rows of the schedule are then completed as follows: 

sn 
L

 

sn−1 L 

sn−2 L 

sn−3 L 

⁝ ⁝ 

s0 

where 

bn−1 = − 

bn−3 = − 

cn−1 = − 

 
an 

an−1 

an 

an−1 

an−1 

bn−1 

 
an−2 

an−3 

an−4 

an−5 

an−3 

bn−3 

and so on. Once The Routh’s tabulation has been completed, we investigate the signs of the 

coefficients in the first column of the tabulation. 

 

an−1 

 

an−1 

 

bn−1 

a an−2 an−4 
n 

an−1 an−3 an−5 

bn−1 bn−3 bn−5 

cn−1 cn−3 cn−5 

⁝ 

hn−1 

⁝ ⁝ 

 

1. All the coefficients of the equation have the same sign 

2. None of the coefficients vanishes 



 

The roots of the equation are all in the left half of the s-plane if all the elements of the first 

column of the Routh’s tabulation are of the same sign. The number of changes of signs in the 

elements of the first column equals the number of roots with positive real parts or in the right-half 

s-plane. 



Example 4.1 
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Consider the equation 

(s − 2)(s + 1)(s − 3) = s3 − 4s2 + s + 6 = 0 

This equation has one negative coefficient. Thus, we know without applying Routh’s test that not 

all the roots of the equation are in the left-half s-plane. In fact, from the factored form of the 

equation, we know that there are two roots in the right-half s-plane, at s = 2 and s = 3. For 

purpose of illustrating the Routh’s Tabulation, it is made as follows: 

s3 1 1 

s2 − 4 6 

s1 2.5 0 

s0 6 0 

Since there are two sign changes in the first column of the tabulation, the equation has two roots 

located in the right-half s-plane. 
 

Example 4.2 
Consider the equation 

2s4 + s3 + 3s2 + 5s + 10 = 0 
Since this equation has no missing terms and the coefficients are all of the same sign, it satisfies 

the necessary conditions for not having roots in the right half or on the imaginary axis of the s-

plane. However, since these conditions are necessary but not sufficient, we have to check Routh’s 

tabulation. 

s4 

s3 

s2 

s1 

s0 

Since there are two changes in the first column of the tabulation, the equation has two roots in the 

right half of the s-plane. 

 

 
4.1.1.2 Special Cases When Routh’s Tabulation Terminates Prematurely 

Depending on the coefficients of the equation, the following difficulties may occur that prevent 

Routh’s tabulation from completing properly: 
 

 

In the first case we replace the zero element in the first column by an arbitrary small positive 

number , and then proceed with Routh’s tabulation. 

This is illustrated by the following example. 

2 3 10 

1 5 0 

− 7 10 0 

6.43 0 0 

10 0 0 
 

1. The first element in any one row of Routh's tabulation is zero, but the others are not. 

2. The elements in one row of Routh's tabulation are all zero. 
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Example 4.3 
Consider the characteristic equation of a linear system: 

s 4 + s3 + 2s2 + 2s + 3 = 0 
Since all the coefficients are nonzero and of the same sign, we need to apply the Routh-Hurwitz 

criterion. Routh’s tabulation is carried out as follows: 

s 4 1 2 3 

s3 1 2 0 

s 0 3 

Since the first element of the s2 row is zero, the element in the s1 row would all be infinite. To 

overcome this difficulty, we replace the zero in the s2 row by a small positive number  and then 

proceed with the tabulation. 

s2  3 

s1  − 
3 

0 
 

s0 3 0 

Since there are two sign changes in the first column of Routh’s tabulation, the equation has two 

roots in the right-half s-plane. 

 

In the second special case, when all the elements in one row of Routh’s tabulation are zeros 

before the tabulation is properly terminated, it indicates that one or more of the following 

conditions may exist: 

1. The equation has at least one pair of real roots with equal magnitude but opposite signs. 

2. The equation has one or more pairs of imaginary roots. 

3. The equation has pairs of complex-conjugate roots forming symmetry about the origin of the 

s-plane (e.g. s = -1  j1, s = 1 j1). 

 

The situation with the entire row of zeros can be remedied by using the auxiliary equation 

A(s) = 0, which is formed from the coefficients of the row just above the row of zeros in Routh’s 

tabulation. The roots of the auxiliary equation also satisfy the original equation. 

 

To continue with Routh’s tabulation when a row of zeros appears, we conduct the following 

steps: 

 
 

Example 4.4 
Consider the following characteristic equation of a linear control system: 

s5 + 4s4 + 8s3 + 8s2 + 7s + 4 = 0 

1. For the auxiliary equation A(s) = 0 by use of the coefficients from the row just preceding the 

row of zeros. 

2. Take the derivative of the auxiliary equation with respect to s; this gives dA(s)/ds = 0. 

3. Replace the row of zeros with the coefficients of dA(s)/ds = 0. 

4. Continue with Routh's tabulation in the usual manner. 
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Routh’s tabulation is 

s5 1 8 7 

s4 4 8 4 

s3 6 6 0 

s2 4 4 

s1 0 0 

A(s) = 4s2 + 4 = 0 

The derivative of A(s) with respect to s is 

dA(s)/ds = 8s = 0 

 

From which the remaining portion of the Routh’s tabulation is 

s1 8 0 

s0 4 

Since there are no sign changes in the first column, the system is stable. Solving the auxiliary 

equation A(s) = 0, we get the two roots at s = j and s = -j, which are also two of the roots of the 

characteristic equation. Thus the equation has two roots on the j-axis, and the system is marginally 

stable. These imaginary roots caused the tabulation to have an entire row of zeros in the s1 row. 

 

Example 4.5 
Consider that a third-order control system has the characteristic equation 

s3 + 3408.3s2 + 1204 103 s + 1.5 107 k = 0 
Determine the crucial value of k for stability. 

 

Routh’s tabulation is 

s3 1 

s2 3408 

1 
− 

1.5 107 k − 3408 1204 103 

3408 

1204 103 

1.5 107 k 

0 

s0 1.5 107 
 

 

For the system to be stable, all the coefficients in the first column must have the same sign. This 

lead to the following conditions: 

− 
1.5 107 k − 410.36 107 


 

3408 
Therefore, the condition of k for the system to be stable is 

0  k  273.57 
If we let k = 273.57, the characteristic equation will have two roots on the j-axis. 

To find these roots, we substitute k = 273.57 in the auxiliary equation, as follows: 

s 

0 
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A(s) = 3408.3s2 + 4.1036 109 = 0 

which has roots at s = j1097.27 and s = -j1097.27. Thus if the system operate with k = 

273.57, the system response will be an undamped sinusoid with a frequency of 1097.27 

rad/sec. 

 
 


