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COMBINATIONAL LOGIC CIRCUIT 

Boolean Laws and Theorems 

Boolean Algebra is an algebra, which deals with binary numbers & binary variables. 

Hence, it is also called as Binary Algebra or logical Algebra. A mathematician, named 

George Boole had developed this algebra in 1854. The variables used in this algebra are also 

called as Boolean variables. 

The range of voltages corresponding to Logic ‘High’ is represented with ‘1’ and the range of 

voltages corresponding to logic ‘Low’ is represented with ‘0’. 

Postulates and Basic Laws of Boolean Algebra 

In this section, let us discuss about the Boolean postulates and basic laws that are used in 

Boolean algebra. These are useful in minimizing Boolean functions. 

Boolean Postulates 



Consider the binary numbers 0 and 1, Boolean variable (x) and its complement (x’). Either 

the Boolean variable or complement of it is known as literal. The four possible logical 

OR operations among these literals and binary numbers are shown below. 

x + 0 = x 

x + 1 = 1 

x + x = x 

x + x’ = 1 

Similarly, the four possible logical AND operations among those literals and binary 

numbers are shown below. 

x.1 = x 

x.0 = 0 

x.x = x 

x.x’ = 0 

These are the simple Boolean postulates. We can verify these postulates easily, by 

substituting the Boolean variable with ‘0’ or ‘1’. 

Note− The complement of complement of any Boolean variable is equal to the variable 

itself. i.e., (x’)’=x. 

Basic Laws of Boolean Algebra 

Following are the three basic laws of Boolean Algebra. 

• Commutative law 

• Associative law 

• Distributive law 

Commutative Law 

If any logical operation of two Boolean variables give the same result irrespective of 

the order of those two variables, then that logical operation is said to be Commutative. The 

logical OR & logical AND operations of two Boolean variables x & y are shown below 

x + y = y + x 

x.y = y.x 

The symbol ‘+’ indicates logical OR operation. Similarly, the symbol ‘.’ indicates logical 

AND operation and it is optional to represent. Commutative law obeys for logical OR & 

logical AND operations. 

Associative Law 

If a logical operation of any two Boolean variables is performed first and then the 

same operation is performed with the remaining variable gives the same result, then that 



logical operation is said to be Associative. The logical OR & logical AND operations of 

three Boolean variables x, y & z are shown below. 

x + (y + z) = (x + y) + z 

x.(y.z) = (x.y).z 

Associative law obeys for logical OR & logical AND operations. 

Distributive Law 

If any logical operation can be distributed to all the terms present in the Boolean 

function, then that logical operation is said to be Distributive. The distribution of logical 

OR & logical AND operations of three Boolean variables x, y & z are shown below. 

x.(y + z) = x.y + x.z 

x + (y.z) = (x + y).(x + z) 

Distributive law obeys for logical OR and logical AND operations. 

These are the Basic laws of Boolean algebra. We can verify these laws easily, by 

substituting the Boolean variables with ‘0’ or ‘1’. 

Theorems of Boolean Algebra 

The following two theorems are used in Boolean algebra. 

• Duality theorem 

• DeMorgan’s theorem 

Duality Theorem 

This theorem states that the dual of the Boolean function is obtained by 

interchanging the logical AND operator with logical OR operator and zeros with ones. For 

every Boolean function, there will be a corresponding Dual function. 

Let us make the Boolean equations (relations) that we discussed in the section of Boolean 

postulates and basic laws into two groups. The following table shows these two groups. 

Group1 Group2 

x + 0 = x x.1 = x 

x + 1 = 1 x.0 = 0 

x + x = x x.x = x 

x + x’ = 1 x.x’ = 0 



x + y = y + x x.y = y.x 

x + (y + z) = (x + y) + z x.(y.z) = (x.y).z 

x.(y + z) = x.y + x.z x + (y.z) = (x + y).(x + z) 

In each row, there are two Boolean equations and they are dual to each other. We can verify 

all these Boolean equations of Group1 and Group2 by using duality theorem. 

DeMorgan’s Theorem 

This theorem is useful in finding the complement of Boolean function. It states that 

the complement of logical OR of at least two Boolean variables is equal to the logical AND 

of each complemented variable. 

DeMorgan’s theorem with 2 Boolean variables x and y can be represented as 

(x + y)’ = x’.y’ 

The dual of the above Boolean function is 

(x.y)’ = x’ + y’ 

Therefore, the complement of logical AND of two Boolean variables is equal to the logical 

OR of each complemented variable. Similarly, we can apply DeMorgan’s theorem for more 

than 2 Boolean variables also. 

Simplification of Boolean Functions 

Till now, we discussed the postulates, basic laws and theorems of Boolean algebra. 

Now, let us simplify some Boolean functions. 

Eg 

Let us simplify the Boolean function, f = p’qr + pq’r + pqr’ + pqr 

We can simplify this function in two methods. 

Method 1 

Given Boolean function, f = p’qr + pq’r + pqr’ +pqr. 

Step 1 − In first and second terms r is common and in third and fourth terms pq is common. 

So, take the common terms by using Distributive law. 

⇒ f = (p’q + pq’)r + pq(r’ + r) 

Step 2 − The terms present in first parenthesis can be simplified to Ex-OR operation. The 

terms present in second parenthesis can be simplified to ‘1’ using Boolean postulate 

⇒ f = (p ⊕q)r + pq(1) 

Step 3 − The first term can’t be simplified further. But, the second term can be simplified to 

pq using Boolean postulate. 



⇒ f = (p ⊕q)r + pq 

Therefore, the simplified Boolean function is f = (p⊕q)r + pq 

Method 2 

Given Boolean function, f = p’qr + pq’r + pqr’ + pqr. 

Step 1 − Use the Boolean postulate, x + x = x. That means, the Logical OR operation with 

any Boolean variable ‘n’ times will be equal to the same variable. So, we can write the last 

term pqr two more times. 

⇒ f = p’qr + pq’r + pqr’ + pqr + pqr + pqr 

Step 2 − Use Distributive law for 1st and 4th terms, 2nd and 5th terms, 3rd and 6th terms. 

⇒ f = qr(p’ + p) + pr(q’ + q) + pq(r’ + r) 

Step 3 − Use Boolean postulate, x + x’ = 1 for simplifying the terms present in each 

parenthesis. 

⇒ f = qr(1) + pr(1) + pq(1) 

Step 4 − Use Boolean postulate, x.1 = x for simplifying the above three terms. 

⇒ f = qr + pr + pq 

⇒ f = pq + qr + pr 

Therefore, the simplified Boolean function is f = pq + qr + pr. 

So, we got two different Boolean functions after simplifying the given Boolean function in 

each method. Functionally, those two Boolean functions are same. So, based on the 

requirement, we can choose one of those two Boolean functions. 

Eg 

Let us find the complement of the Boolean function, f = p’q + pq’. 

The complement of Boolean function is f’ = (p’q + pq’)’. 

Step 1 − Use DeMorgan’s theorem, (x + y)’ = x’.y’. 

⇒ f’ = (p’q)’.(pq’)’ 

Step 2 − Use DeMorgan’s theorem, (x.y)’ = x’ + y’ 

⇒ f’ = {(p’)’ + q’}.{p’ + (q’)’} 

Step3 − Use the Boolean postulate, (x’)’=x. 

⇒ f’ = {p + q’}.{p’ + q} 

⇒ f’ = pp’ + pq + p’q’ + qq’ 

Step 4 − Use the Boolean postulate, xx’=0. 

⇒ f = 0 + pq + p’q’ + 0 

⇒ f = pq + p’q’ 

Therefore, the complement of Boolean function, p’q + pq’ is pq + p’q’. 



Sum of product Method(SOP) 

A canonical sum of products is a boolean expression that entirely consists of 

minterms. The Boolean function F is defined on two variables X and Y. The X and Y are the 

inputs of the boolean function F whose output is true when any one of the inputs is set to true. 

The truth table for Boolean expression F is as follows: 

Inputs Output 

X Y F 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

we can form the minterm from the variable's value. Now, a column will be added for 

the minterm in the above table. The complement of the variables is taken whose value is 0, 

and the variables whose value is 1 will remain the same. 

Inputs Output Minterm 

X Y F M 

0 0 0 X'Y' 

0 1 1 X'Y 

1 0 1 XY' 

1 1 1 XY 

Now, we will add all the minterms for which the output is true to find the desired canonical 

SOP(Sum of Product) expression. 

F=X' Y+XY'+XY 

Converting Sum of Products (SOP) to shorthand notation 

The process of converting SOP form to shorthand notation is the same as the process of 

finding shorthand notation for minterms. There are the following steps to find the shorthand 

notation of the given SOP expression. 

o Write the given SOP expression. 

o Find the shorthand notation of all the minterms. 

o Replace the minterms with their shorthand notations in the given expression. 



Example: F = X'Y+XY'+XY 

1. Firstly, we write the SOP expression: 

F = X'Y+XY'+XY 

2. Now, we find the shorthand notations of the minterms X'Y, XY', and XY. 

X'Y = (01)2 = m1 

XY' = (10)2 = m2 

XY = (11)2 = m3 

3. In the end, we replace all the minterms with their shorthand notations: 

F=m1+m2+m3 

Converting shorthand notation to SOP expression 

The process of converting shorthand notation to SOP is the reverse process of converting 

SOP expression to shorthand notation. Let's see an example to understand this conversion. 

Example: 

Let us assume that we have a boolean function F, which defined on two variables X and Y. 

The minterms for the function F are expressed as shorthand notation is as follows: 

F=∑(1,2,3) 

Now, from this expression, we will find the SOP expression. The Boolean function F has two 

input variables X and y and the output of F=1 for m1, m2, and m3, i.e., 1st, 2nd, and 

3rd combinations. So, 

F=∑(1,2,3) 

F= m1 + m2 + m3 

F= 01 + 10 + 11 

Now, we replace zeros with either X' or Y' and ones with either X or Y. Simply, the 

complement variable is used when the variable value is 1 otherwise the non-complement 

variable is used. 

F = ∑(1,2,3) 

F=01+10+11 

F= A'B + AB' + AB 

Karnaugh Map(K-Map) method 



Karnaugh introduced a method for simplification of Boolean functions in an easy 

way. This method is known as Karnaugh map method or K-map method. It is a graphical 

method, which consists of 2n cells for ‘n’ variables. The adjacent cells are differed only in 

single bit position. 

K-Maps for 2 to 5 Variables 

K-Map method is most suitable for minimizing Boolean functions of 2 variables to 5 

variables. Now, let us discuss about the K-Maps for 2 to 5 variables one by one. 

2 Variable K-Map 

The number of cells in 2 variable K-map is four, since the number of variables is two. 

The following figure shows 2 variable K-Map. 

 

• There is only one possibility of grouping 4 adjacent min terms. 

• The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m2, m3), 

(m0, m2) and (m1, m3)}. 

3 Variable K-Map 

The number of cells in 3 variable K-map is eight, since the number of variables is 

three. The following figure shows 3 variable K-Map. 

 

• There is only one possibility of grouping 8 adjacent min terms. 

• The possible combinations of grouping 4 adjacent min terms are {(m0, m1, m3, m2), 

(m4, m5, m7, m6), (m0, m1, m4, m5), (m1, m3, m5, m7), (m3, m2, m7, m6) and (m2, m0, 

m6, m4)}. 

• The possible combinations of grouping 2 adjacent min terms are {(m0, m1), (m1, m3), 

(m3, m2), (m2, m0), (m4, m5), (m5, m7), (m7, m6), (m6, m4), (m0, m4), (m1, m5), (m3, 

m7) and (m2, m6)}. 

• If x=0, then 3 variable K-map becomes 2 variable K-map. 

4 Variable K-Map 



The number of cells in 4 variable K-map is sixteen, since the number of variables is 

four. The following figure shows 4 variable K-Map. 

 

• There is only one possibility of grouping 16 adjacent min terms. 

• Let R1, R2, R3 and R4 represents the min terms of first row, second row, third row and 

fourth row respectively. Similarly, C1, C2, C3 and C4 represents the min terms of first 

column, second column, third column and fourth column respectively. The possible 

combinations of grouping 8 adjacent min terms are {(R1, R2), (R2, R3), (R3, R4), (R4, 

R1), (C1, C2), (C2, C3), (C3, C4), (C4, C1)}. 

• If w=0, then 4 variable K-map becomes 3 variable K-map. 

5 Variable K-Map 

The number of cells in 5 variable K-map is thirty-two, since the number of variables 

is 5. The following figure shows 5 variable K-Map. 

 

• There is only one possibility of grouping 32 adjacent min terms. 

• There are two possibilities of grouping 16 adjacent min terms. i.e., grouping of min 

terms from m0 to m15 and m16 to m31. 

• If v=0, then 5 variable K-map becomes 4 variable K-map. 

In the above all K-maps, we used exclusively the min terms notation. Similarly, you can use 

exclusively the Max terms notation. 

Minimization of Boolean Functions using K-Maps 



If we consider the combination of inputs for which the Boolean function is ‘1’, then 

we will get the Boolean function, which is in standard sum of products form after 

simplifying the K-map. 

Similarly, if we consider the combination of inputs for which the Boolean function is ‘0’, 

then we will get the Boolean function, which is in standard product of sums form after 

simplifying the K-map. 

Follow these rules for simplifying K-maps in order to get standard sum of products form. 

• Select the respective K-map based on the number of variables present in the Boolean 

function. 

• If the Boolean function is given as sum of min terms form, then place the ones at 

respective min term cells in the K-map. If the Boolean function is given as sum of 

products form, then place the ones in all possible cells of K-map for which the given 

product terms are valid. 

• Check for the possibilities of grouping maximum number of adjacent ones. It should 

be powers of two. Start from highest power of two and upto least power of two. 

Highest power is equal to the number of variables considered in K-map and least 

power is zero. 

• Each grouping will give either a literal or one product term. It is known as prime 

implicant. The prime implicant is said to be essential prime implicant, if atleast 

single ‘1’ is not covered with any other groupings but only that grouping covers. 

• Note down all the prime implicants and essential prime implicants. The simplified 

Boolean function contains all essential prime implicants and only the required prime 

implicants. 

Note 1 − If outputs are not defined for some combination of inputs, then those output values 

will be represented with don’t care symbol ‘x’. That means, we can consider them as either 

‘0’ or ‘1’. 

Note 2 − If don’t care terms also present, then place don’t cares ‘x’ in the respective cells of 

K-map. Consider only the don’t cares ‘x’ that are helpful for grouping maximum number of 

adjacent ones. In those cases, treat the don’t care value as ‘1’. 

Eg 

Let us simplify the following Boolean function, f(W, X, Y, Z)= WX’Y’ + WY + 

W’YZ’ using K-map. 

The given Boolean function is in sum of products form. It is having 4 variables W, X, Y & 

Z. So, we require 4 variable K-map. The 4 variable K-map with ones corresponding to the 

given product terms is shown in the following figure. 



 

Here, 1s are placed in the following cells of K-map. 

• The cells, which are common to the intersection of Row 4 and columns 1 & 2 are 

corresponding to the product term, WX’Y’. 

• The cells, which are common to the intersection of Rows 3 & 4 and columns 3 & 4 

are corresponding to the product term, WY. 

• The cells, which are common to the intersection of Rows 1 & 2 and column 4 are 

corresponding to the product term, W’YZ’. 

There are no possibilities of grouping either 16 adjacent ones or 8 adjacent ones. There are 

three possibilities of grouping 4 adjacent ones. After these three groupings, there is no single 

one left as ungrouped. So, we no need to check for grouping of 2 adjacent ones. The 4 

variable K-map with these three groupings is shown in the following figure. 

 

Here, we got three prime implicants WX’, WY & YZ’. All these prime implicants 

are essential because of following reasons. 

• Two ones (m8 & m9) of fourth row grouping are not covered by any other groupings. 

Only fourth row grouping covers those two ones. 

• Single one (m15) of square shape grouping is not covered by any other groupings. 

Only the square shape grouping covers that one. 

• Two ones (m2 & m6) of fourth column grouping are not covered by any other 

groupings. Only fourth column grouping covers those two ones. 

Therefore, the simplified Boolean function is 

f = WX’ + WY + YZ’ 

Follow these rules for simplifying K-maps in order to get standard product of sums form. 



• Select the respective K-map based on the number of variables present in the Boolean 

function. 

• If the Boolean function is given as product of Max terms form, then place the zeroes 

at respective Max term cells in the K-map. If the Boolean function is given as 

product of sums form, then place the zeroes in all possible cells of K-map for which 

the given sum terms are valid. 

• Check for the possibilities of grouping maximum number of adjacent zeroes. It 

should be powers of two. Start from highest power of two and upto least power of 

two. Highest power is equal to the number of variables considered in K-map and 

least power is zero. 

• Each grouping will give either a literal or one sum term. It is known as prime 

implicant. The prime implicant is said to be essential prime implicant, if atleast 

single ‘0’ is not covered with any other groupings but only that grouping covers. 

• Note down all the prime implicants and essential prime implicants. The simplified 

Boolean function contains all essential prime implicants and only the required prime 

implicants. 

Note − If don’t care terms also present, then place don’t cares ‘x’ in the respective cells of 

K-map. Consider only the don’t cares ‘x’ that are helpful for grouping maximum number of 

adjacent zeroes. In those cases, treat the don’t care value as ‘0’. 

Pair, Quad and Octet 

Pair Reduction Rule : Remove the variable which changes its state from complemented to 

uncomplemented or vice versa.Pair removes one variable only. 

 

Quad Reduction Rule : Remove the two variables which change their states.A quad 

removes two variables. 

 

Octet Reduction Rule : Remove the three variables which changes their state.Octet removes 

three variables. 



 

Map Rolling : Map rolling means roll the map considering the map as if its left edges are 

touching the right edges and top edges are touching bottom edges.While marking the pairs 

quads and octet, map must be rolled. 

 

Overlapping Groups : Overlapping means same 1 can be encircled more than once. 

Overlapping always leads to simpler expressions. 

 

Redundant Group : It is a group whose all 1's are overlapped by other groups. Redundant 

groups must be removed. Removal of redundant group leads to much simpler expression. 

 

  

Eg : Represent the following boolean expression in a K-map and simplify. 

F = x'yz + x'yz' + xy'z' + xy'z 

Solution : 

The K-map is as follows : 



 

Hence the simplified expression is 

F = x'y + xy' 

Ex. 2 :Simplify the following boolean expression using K-map. 

F = a'bc + ab'c' + abc + abc' 

Solution : 

The K-map is as follows : 

 

Hence the simplified expression is 

F = bc + ac' 

Don’t Care Condition 

The “Don’t Care” conditions allow us to replace the empty cell of a K-Map to form a 

grouping of the variables. While forming groups of cells, we can consider a “Don’t Care” cell 

as either 1 or 0 or we can simply ignore that cell. Therefore, “Don’t Care” condition can help us 

to form a larger group of cells. 

A Don’t Care cell can be represented by a cross(X) in K-Maps representing a invalid 

combination. For example, in Excess-3 code system, the states 0000, 0001, 0010, 1101, 1110 

and 1111 are invalid or unspecified. These are called don’t cares. Also, in design of 4-bit BCD-

to-XS-3 code converter, the input combinations 1010, 1011, 1100, 1101, 1110, and 1111 are 

don’t cares. 

A standard SOP function having don’t cares can be converted into a POS expression by 

keeping don’t cares as they are, and writing the missing minterms of the SOP form as the 

maxterm of POS form. Similarly, a POS function having don’t cares can be converted to SOP 

form keeping the don’t cares as they are and write the missing maxterms of the POS expression 

as the minterms of SOP expression. 

Eg 

Minimise the following function in SOP minimal form using K-Maps: 

f = m(1, 5, 6, 12, 13, 14) + d(4) 

https://www.geeksforgeeks.org/k-mapkarnaugh-map/


Explanation 

The SOP K-map for the given expression is: 

 

 

 

Therefore, SOP minimal is, 

f = BC' + BD' + A'C'D 

Eg 

Minimise the following function in SOP minimal form using K-Maps: 

F(A, B, C, D) = m(0, 1, 2, 3, 4, 5) + d(10, 11, 12, 13, 14, 15) 

Explanation: 

Writing the given expression in POS form: 

F(A, B, C, D) = M(6, 7, 8, 9) + d(10, 11, 12, 13, 14, 15) 

 

The POS K-map for the given expression is: 

 

Therefore, POS minimal is, 

F = A'(B' + C') 

Eg 

Minimise the following function in SOP minimal form using K-Maps: F(A, B, C, D) = m(1, 2, 

6, 7, 8, 13, 14, 15) + d(3, 5, 12) 

Explanation: 

The SOP K-map for the given expression is: 

 



Therefore, 

f = AC'D' + A'D + A'C + AB 

Product of Sum Method(POS) 

A canonical product of sum is a boolean expression that entirely consists of 

maxterms. The Boolean function F is defined on two variables X and Y. The X and Y are the 

inputs of the boolean function F whose output is true when only one of the inputs is set to 

true. The truth table for Boolean expression F is as follows: 

Inputs Output 

X Y F 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

In our minterm and maxterm section, we learned about how we can form the maxterm from 

the variable's value. A column will be added for the maxterm in the above table. The 

complement of the variables is taken whose value is 0, and the variables whose value is 1 will 

remain the same. 

Inputs Output Minterm 

X Y F M 

0 0 0 X'+Y' 

0 1 1 X'+Y 

1 0 1 X+Y' 

1 1 1 X+Y 

Now, we will multiply all the minterms for which the output is false to find the desired 

canonical POS(Product of sum) expression. 

F=(X'+Y').(X+Y) 

Converting Product of Sum (POS) to shorthand notation 

The process of converting POS form to shorthand notation is the same as the process of 

finding shorthand notation for maxterms. There are the following steps used to find the 

shorthand notation of the given POS expression. 



o Write the given POS expression. 

o Find the shorthand notation of all the maxterms. 

o Replace the minterms with their shorthand notations in the given expression. 

Eg  

F = (X'+Y').(X+Y) 

1. Firstly, we will write the POS expression: 

F = (X'+Y').(X+Y) 

2. Now, we will find the shorthand notations of the maxterms X'+Y' and X+Y. 

X'+Y' = (00)2 = M0 

X+Y = (11)2 = M3 

3. In the end, we will replace all the minterms with their shorthand notations: 

F=M0.M3 

Converting shorthand notation to POS expression 

The process of converting shorthand notation to POS is the reverse process of 

converting POS expression to shorthand notation. Let's see an example to understand this 

conversion. 

Eg 

Let us assume that we have a boolean function F, defined on two variables X and Y. 

The maxterms for the function F are expressed as shorthand notation is as follows: 

F=∏(1,2,3) 

Now, from this expression, we find the POS expression. The Boolean function F has two 

input variables X and Y and the output of F=0 for M1, M2, and M3, i.e., 1st, 2nd, and 

3rd combinations. So, 

F=∏(1,2,3) 

F= M1.M2.M3 

F= 01.10.11 

Next, we replace zeros with either X or Y and ones with either X' or Y'. Simply, if the value 

of the variable is 1, then we take the complement of that variable, and if the value of the 

variable is 0, then we take the variable "as is". 



F = ∑(1,2,3) 

F=01.10.11 

F=(A+B').( A'+B).( A'+B') 

Product of Sum Simplification 

To find the simplified maxterm solution using K-map is the same as to find for the 

minterm solution. There are some minor changes in the maxterm solution, which are as 

follows: 

1. We will populate the K-map by entering the value of 0 to each sum-term into the K-

map cell and fill the remaining cells with one's. 

2. We will make the groups of 'zeros' not for 'ones'. 

3. Now, we will define the boolean expressions for each group as sum-terms. 

4. At last, to find the simplified boolean expression in the POS form, we will combine 

the sum-terms of all individual groups. 

Let's take some example of 2-variable, 3-variable, 4-variable and 5-variable K-map examples 

Eg 

 Y=(A'+B')+(A'+B)+(A+B) 

 

Simplified expression: A'B 

Eg  

Y=(A + B + C') + (A + B' + C') + (A' + B' + C) + (A' + B' + C') 

 

Simplified expression: Y=(A + C') .(A' + B') 



Eg  

F(A,B,C,D)=π(3,5,7,8,10,11,12,13) 

 

Simplified expression: Y=(A + C') .(A' + B') 

Data Processing Circuit 

Multiplexer 

Multiplexer is a combinational circuit that has maximum of 2n data inputs, ‘n’ 

selection lines and single output line. One of these data inputs will be connected to the 

output based on the values of selection lines. 

Since there are ‘n’ selection lines, there will be 2n possible combinations of zeros and 

ones. So, each combination will select only one data input. Multiplexer is also called 

as Mux. 

4x1 Multiplexer 

4x1 Multiplexer has four data inputs I3, I2, I1 & I0, two selection lines s1 & s0 and one 

output Y. The block diagram of 4x1 Multiplexer is shown in the following figure. 

 

One of these 4 inputs will be connected to the output based on the combination of inputs 

present at these two selection lines. Truth table of 4x1 Multiplexer is shown below. 

Selection Lines Output 

S1 S0 Y 

0 0 I0 

0 1 I1 



1 0 I2 

1 1 I3 

From Truth table, we can directly write the Boolean function for output, Y as 

Y={S{1}}'{S{0}}'I{0}+{S{1}}'S{0}I{1}+S{1}{S{0}}'I{2}+S{1}S{0}I{3} 

We can implement this Boolean function using Inverters, AND gates & OR gate. 

The circuit diagram of 4x1 multiplexer is shown in the following figure. 

 

We can easily understand the operation of the above circuit. Similarly, you can implement 

8x1 Multiplexer and 16x1 multiplexer by following the same procedure. 

Implementation of Higher-order Multiplexers. 

Now, let us implement the following two higher-order Multiplexers using lower-order 

Multiplexers. 

• 8x1 Multiplexer 

• 16x1 Multiplexer 

8x1 Multiplexer 

In this section, let us implement 8x1 Multiplexer using 4x1 Multiplexers and 2x1 

Multiplexer. We know that 4x1 Multiplexer has 4 data inputs, 2 selection lines and one 

output. Whereas, 8x1 Multiplexer has 8 data inputs, 3 selection lines and one output. 

So, we require two 4x1 Multiplexers in first stage in order to get the 8 data inputs. Since, 

each 4x1 Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by 

considering the outputs of first stage as inputs and to produce the final output. 

Let the 8x1 Multiplexer has eight data inputs I7 to I0, three selection lines s2, s1 & s0 and one 

output Y. The Truth table of 8x1 Multiplexer is shown below. 

Selection Inputs Output 

S2 S1 S0 Y 



0 0 0 I0 

0 0 1 I1 

0 1 0 I2 

0 1 1 I3 

1 0 0 I4 

1 0 1 I5 

1 1 0 I6 

1 1 1 I7 

We can implement 8x1 Multiplexer using lower order Multiplexers easily by considering the 

above Truth table. The block diagram of 8x1 Multiplexer is shown in the following figure. 

 

The same selection lines, s1 & s0 are applied to both 4x1 Multiplexers. The data inputs of 

upper 4x1 Multiplexer are I7 to I4 and the data inputs of lower 4x1 Multiplexer are I3 to I0. 

Therefore, each 4x1 Multiplexer produces an output based on the values of selection lines, 

s1 & s0. 

The outputs of first stage 4x1 Multiplexers are applied as inputs of 2x1 Multiplexer that is 

present in second stage. The other selection line, s2 is applied to 2x1 Multiplexer. 

• If s2 is zero, then the output of 2x1 Multiplexer will be one of the 4 inputs I3 to 

I0 based on the values of selection lines s1 & s0. 

• If s2 is one, then the output of 2x1 Multiplexer will be one of the 4 inputs I7 to 

I4 based on the values of selection lines s1 & s0. 

Therefore, the overall combination of two 4x1 Multiplexers and one 2x1 Multiplexer 

performs as one 8x1 Multiplexer. 

 



16x1 Multiplexer 

In this section, let us implement 16x1 Multiplexer using 8x1 Multiplexers and 2x1 

Multiplexer. We know that 8x1 Multiplexer has 8 data inputs, 3 selection lines and one 

output. Whereas, 16x1 Multiplexer has 16 data inputs, 4 selection lines and one output. 

So, we require two 8x1 Multiplexers in first stage in order to get the 16 data inputs. Since, 

each 8x1 Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by 

considering the outputs of first stage as inputs and to produce the final output. 

Let the 16x1 Multiplexer has sixteen data inputs I15 to I0, four selection lines s3 to s0 and one 

output Y. The Truth table of 16x1 Multiplexer is shown below. 

Selection Inputs Output 

S3 S2 S1 S0 Y 

0 0 0 0 I0 

0 0 0 1 I1 

0 0 1 0 I2 

0 0 1 1 I3 

0 1 0 0 I4 

0 1 0 1 I5 

0 1 1 0 I6 

0 1 1 1 I7 

1 0 0 0 I8 

1 0 0 1 I9 

1 0 1 0 I10 

1 0 1 1 I11 

1 1 0 0 I12 

1 1 0 1 I13 

1 1 1 0 I14 

1 1 1 1 I15 

We can implement 16x1 Multiplexer using lower order Multiplexers easily by considering 

the above Truth table. The block diagram of 16x1 Multiplexer is shown in the following 

figure. 



 

The same selection lines, s2, s1 & s0 are applied to both 8x1 Multiplexers. The data inputs of 

upper 8x1 Multiplexer are I15 to I8 and the data inputs of lower 8x1 Multiplexer are I7 to I0. 

Therefore, each 8x1 Multiplexer produces an output based on the values of selection lines, 

s2, s1 & s0. 

The outputs of first stage 8x1 Multiplexers are applied as inputs of 2x1 Multiplexer that is 

present in second stage. The other selection line, s3 is applied to 2x1 Multiplexer. 

• If s3 is zero, then the output of 2x1 Multiplexer will be one of the 8 inputs Is7 to 

I0 based on the values of selection lines s2, s1 & s0. 

• If s3 is one, then the output of 2x1 Multiplexer will be one of the 8 inputs I15 to 

I8 based on the values of selection lines s2, s1 & s0. 

Therefore, the overall combination of two 8x1 Multiplexers and one 2x1 Multiplexer 

performs as one 16x1 Multiplexer. 

De-Multiplexer   

De-Multiplexer is a combinational circuit that performs the reverse operation of 

Multiplexer. It has single input, ‘n’ selection lines and maximum of 2n outputs. The input 

will be connected to one of these outputs based on the values of selection lines. 

Since there are ‘n’ selection lines, there will be 2n possible combinations of zeros and ones. 

So, each combination can select only one output. De-Multiplexer is also called as De-Mux. 

1x4 De-Multiplexer 

1x4 De-Multiplexer has one input I, two selection lines, s1 & s0 and four outputs Y3, 

Y2, Y1 &Y0. The block diagram of 1x4 De-Multiplexer is shown in the following figure. 



 

The single input ‘I’ will be connected to one of the four outputs, Y3 to Y0 based on the 

values of selection lines s1 & s0. The Truth table of 1x4 De-Multiplexer is shown below. 

Selection Inputs Outputs 

S1 S0 Y3 Y2 Y1 Y0 

0 0 0 0 0 I 

0 1 0 0 I 0 

1 0 0 I 0 0 

1 1 I 0 0 0 

From the above Truth table, we can directly write the Boolean functions for each output as 

Y{3}=s{1}s{0}I 

Y{2}=s{1}{s{0}}'I 

Y{1}={s{1}}'s{0}I 

Y{0}={s1}'{s{0}}'I 

We can implement these Boolean functions using Inverters & 3-input AND gates. 

The circuit diagram of 1x4 De-Multiplexer is shown in the following figure. 

 



We can easily understand the operation of the above circuit. Similarly, you can implement 

1x8 De-Multiplexer and 1x16 De-Multiplexer by following the same procedure. 

Implementation of Higher-order De-Multiplexers 

Now, let us implement the following two higher-order De-Multiplexers using lower-order 

De-Multiplexers. 

• 1x8 De-Multiplexer 

• 1x16 De-Multiplexer 

1x8 De-Multiplexer 

In this section, let us implement 1x8 De-Multiplexer using 1x4 De-Multiplexers and 

1x2 De-Multiplexer. We know that 1x4 De-Multiplexer has single input, two selection lines 

and four outputs. Whereas, 1x8 De-Multiplexer has single input, three selection lines and 

eight outputs. 

So, we require two 1x4 De-Multiplexers in second stage in order to get the final eight 

outputs. Since, the number of inputs in second stage is two, we require 1x2 

DeMultiplexer in first stage so that the outputs of first stage will be the inputs of second 

stage. Input of this 1x2 De-Multiplexer will be the overall input of 1x8 De-Multiplexer. 

Let the 1x8 De-Multiplexer has one input I, three selection lines s2, s1 & s0 and outputs Y7 to 

Y0. The Truth table of 1x8 De-Multiplexer is shown below. 

Selection Inputs Outputs 

s2 s1 s0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 

0 0 0 0 0 0 0 0 0 0 I 

0 0 1 0 0 0 0 0 0 I 0 

0 1 0 0 0 0 0 0 I 0 0 

0 1 1 0 0 0 0 I 0 0 0 

1 0 0 0 0 0 I 0 0 0 0 

1 0 1 0 0 I 0 0 0 0 0 

1 1 0 0 I 0 0 0 0 0 0 



1 1 1 I 0 0 0 0 0 0 0 

We can implement 1x8 De-Multiplexer using lower order Multiplexers easily by considering 

the above Truth table. The block diagram of 1x8 De-Multiplexer is shown in the following 

figure. 

 

The common selection lines, s1 & s0 are applied to both 1x4 De-Multiplexers. The outputs 

of upper 1x4 De-Multiplexer are Y7 to Y4 and the outputs of lower 1x4 De-Multiplexer are 

Y3 to Y0. 

The other selection line, s2 is applied to 1x2 De-Multiplexer. If s2 is zero, then one of the 

four outputs of lower 1x4 De-Multiplexer will be equal to input, I based on the values of 

selection lines s1 & s0. Similarly, if s2 is one, then one of the four outputs of upper 1x4 

DeMultiplexer will be equal to input, I based on the values of selection lines s1 & s0. 

1x16 De-Multiplexer 

In this section, let us implement 1x16 De-Multiplexer using 1x8 De-Multiplexers and 

1x2 De-Multiplexer. We know that 1x8 De-Multiplexer has single input, three selection 

lines and eight outputs. Whereas, 1x16 De-Multiplexer has single input, four selection lines 

and sixteen outputs. 

So, we require two 1x8 De-Multiplexers in second stage in order to get the final sixteen 

outputs. Since, the number of inputs in second stage is two, we require 1x2 

DeMultiplexer in first stage so that the outputs of first stage will be the inputs of second 

stage. Input of this 1x2 De-Multiplexer will be the overall input of 1x16 De-Multiplexer. 

Let the 1x16 De-Multiplexer has one input I, four selection lines s3, s2, s1 & s0 and outputs 

Y15 to Y0. The block diagram of 1x16 De-Multiplexer using lower order Multiplexers is 

shown in the following figure. 



 

The common selection lines s2, s1 & s0 are applied to both 1x8 De-Multiplexers. The 

outputs of upper 1x8 De-Multiplexer are Y15 to Y8 and the outputs of lower 1x8 

DeMultiplexer are Y7 to Y0. 

The other selection line, s3 is applied to 1x2 De-Multiplexer. If s3 is zero, then one of the 

eight outputs of lower 1x8 De-Multiplexer will be equal to input, I based on the values of 

selection lines s2, s1 & s0. Similarly, if s3 is one, then one of the 8 outputs of upper 1x8 De-

Multiplexer will be equal to input, I based on the values of selection lines s2, s1 & s0. 

Decoder 

Decoder is a combinational circuit that has ‘n’ input lines and maximum of 2n output 

lines. One of these outputs will be active High based on the combination of inputs present, 

when the decoder is enabled. That means decoder detects a particular code. The outputs of 

the decoder are nothing but the min terms of ‘n’ input variables (lines), when it is enabled. 

1 of 16 Decoder 

In this section, let us implement 4 to 16 decoder using 3 to 8 decoders. We know 

that 3 to 8 Decoder has three inputs A2, A1 & A0 and eight outputs, Y7 to Y0. Whereas, 4 to 

16 Decoder has four inputs A3, A2, A1 & A0 and sixteen outputs, Y15 to Y0 

We know the following formula for finding the number of lower order decoders required. 

Therefore, we require two 3 to 8 decoders for implementing one 4 to 16 decoder. The block 

diagram of 4 to 16 decoder using 3 to 8 decoders is shown in the following figure. 



 

The parallel inputs A2, A1 & A0 are applied to each 3 to 8 decoder. The complement of 

input, A3 is connected to Enable, E of lower 3 to 8 decoder in order to get the outputs, Y7 to 

Y0. These are the lower eight min terms. The input, A3 is directly connected to Enable, E of 

upper 3 to 8 decoder in order to get the outputs, Y15 to Y8. These are the higher eight min 

terms. 

BCD to Decimal Decoder 

In Digital Electronics, discrete quantities of information are represented by binary 

codes. A binary code of n bits is capable of representing up to 2^n distinct elements of coded 

information. The name “Decoder” means to translate or decode coded information from one 

format into another, so a digital decoder transforms a set of digital input signals into an 

equivalent decimal code at its output. A decoder is a combinational circuit that converts 

binary information from n input lines to a maximum of 2^n unique output lines. 

 

 

Binary Decoder 

• Binary Decoders are another type of digital logic device that has inputs of 2-bit, 3-bit 

or 4-bit codes depending upon the number of data input lines, so a decoder that has a set 

of two or more bits will be defined as having an n-bit code, and therefore it will be 

possible to represent 2^n possible values. 

• If a binary decoder receives n inputs it activates one and only one of its 2^n outputs 

based on that input with all other outputs deactivated. If the n -bit coded information has 

unused combinations, the decoder may have fewer than 2^n outputs. 



• Example, an inverter ( NOT-gate ) can be classified as a 1-to-2 binary decoder as 1-

input and 2-outputs is possible. i.e an input A can give either A or A complement as the 

output. 

• Then we can say that a standard combinational logic decoder is an n-to-m decoder, 

where m <= 2^n, and whose output, Q is dependent only on its present input states. 

• Their purpose is to generate the 2^n (or fewer) minterms of n input variables. Each 

combination of inputs will assert a unique output. 

A Binary Decoder converts coded inputs into coded outputs, where the input and output codes 

are different and decoders are available to “decode” either a Binary or BCD (8421 code) input 

pattern to typically a Decimal output code. 

Practical “binary decoder” circuits include 2-to-4, 3-to-8 and 4-to-16 line configurations. 

2-to-4 Binary Decoder  

 

The 2-to-4 line binary decoder depicted above consists of an array of four AND gates. 

The 2 binary inputs labeled A and B are decoded into one of 4 outputs, hence the description of 

a 2-to-4 binary decoder. Each output represents one of the minterms of the 2 input variables, 

(each output = a minterm). 

 
 

The output values will be: 

 

Qo=A’B’ 

Q1=A’B 

Q2=AB’ 

Q3=AB 



The binary inputs A and B determine which output line from Q0 to Q3 is “HIGH” at 

logic level “1” while the remaining outputs are held “LOW” at logic “0” so only one output can 

be active (HIGH) at any one time. Therefore, whichever output line is “HIGH” identifies the 

binary code present at the input, in other words, it “decodes” the binary input. 

Some binary decoders have an additional input pin labeled “Enable” that controls the 

outputs from the device. This extra input allows the outputs of the decoder to be turned “ON” 

or “OFF” as required. The output is only generated when the Enable input has value 1; 

otherwise, all outputs are 0. Only a small change in the implementation is required: the Enable 

input is fed into the AND gates which produce the outputs. 

If Enable is 0, all AND gates are supplied with one of the inputs as 0 and hence no 

output is produced. When Enable is 1, the AND gates get one of the inputs as 1, and now the 

output depends upon the remaining inputs. Hence the output of the decoder is dependent on 

whether the Enable is high or low. 

Seven Segment Decoder 

Light Emitting Diode (LED) is the most widely used semiconductor which emits either 

visible light or invisible infrared light when forward biased. Remote controls generate invisible 

light. A Light emitting diode (LED) is an optical electrical energy into light energy when 

voltage is applied. 

Seven Segment Displays 

Seven segment displays are the output display device that provide a way to display 

information in the form of image or text or decimal numbers which is an alternative to the more 

complex dot matrix displays. It is widely used in digital clocks, basic calculators, electronic 

meters, and other electronic devices that display numerical information. It consists of seven 

segments of light emitting diodes (LEDs) which is assembled like numerical 8. 

 

 

Working of Seven Segment Displays 

The number 8 is displayed when the power is given to all the segments and if you 

disconnect the power for ‘g’, then it displays number 0. In a seven segment display, power (or 

voltage) at different pins can be applied at the same time, so we can form combinations of 

display numerical from 0 to 9. Since seven segment displays can not form alphabet like X and 

Z, so it can not be used for alphabet and it can be used only for displaying decimal numerical 

magnitudes. However, seven segment displays can form alphabets A, B, C, D, E, and F, so they 

can also used for representing hexadecimal digits. 

 



 

 

We can produce a truth table for each decimal digit 

 

 

Therefore, Boolean expressions for each decimal digit which requires respective light 

emitting diodes (LEDs) are ON or OFF. The number of segments used by digit: 0, 1, 2, 3, 4, 5, 

6, 7, 8, and 9 are 6, 2, 5, 5, 4, 5, 6, 3, 7, and 6 respectively. Seven segment displays must be 

controlled by other external devices where different types of microcontrollers are useful to 

communicate with these external devices, like switches, keypads, and memory. 

Types of Seven Segment Displays 

According to the type of application, there are two types of configurations of seven 

segment displays: common anode display and common cathode display. 

1. In common cathode seven segment displays, all the cathode connections of LED 

segments are connected together to logic 0 or ground. We use logic 1 through a current 

limiting resistor to forward bias the individual anode terminals a to g. 



2. Whereas all the anode connections of the LED segments are connected together to 

logic 1 in common anode seven segment display. We use logic 0 through a current 

limiting resistor to the cathode of a particular segment a to g. 

Common anode seven segment displays are more popular than cathode seven segment displays, 

because logic circuits can sink more current than they can source and it is the same as 

connecting LEDs in reverse. 

Applications of Seven Segment Displays 

Common applications of seven segment displays are in: 

1. Digital clocks 

2. Clock radios 

3. Calculators 

4. Wristwatchers 

5. Speedometers 

6. Motor-vehicle odometers 

7. Radio frequency indicators 

Encoder 

An Encoder is a combinational circuit that performs the reverse operation of 

Decoder. It has maximum of 2n input lines and ‘n’ output lines. It will produce a binary code 

equivalent to the input, which is active High. Therefore, the encoder encodes 2n input lines 

with ‘n’ bits. It is optional to represent the enable signal in encoders. 

4 to 2 Encoder 

Let 4 to 2 Encoder has four inputs Y3, Y2, Y1 & Y0 and two outputs A1 & A0. 

The block diagram of 4 to 2 Encoder is shown in the following figure. 

 

At any time, only one of these 4 inputs can be ‘1’ in order to get the respective binary code 

at the output. The Truth table of 4 to 2 encoder is shown below. 

Inputs Outputs 

Y3 Y2 Y1 Y0 A1 A0 

0 0 0 1 0 0 

0 0 1 0 0 1 

0 1 0 0 1 0 



1 0 0 0 1 1 

From Truth table, we can write the Boolean functions for each output as 

A{1}=Y{3}+Y{2} 

A{0}=Y{3}+Y{1} 

We can implement the above two Boolean functions by using two input OR gates. 

The circuit diagram of 4 to 2 encoder is shown in the following figure. 

 

The above circuit diagram contains two OR gates. These OR gates encode the four inputs 

with two bits 

Exclusive-OR gate  

The full form of Ex-OR gate is Exclusive-OR gate. Its function is same as that of OR 

gate except for some cases, when the inputs having even number of ones. 

The following table shows the truth table of 2-input Ex-OR gate. 

A B Y = A⊕B 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Here A, B are the inputs and Y is the output of two input Ex-OR gate. The truth table of Ex-

OR gate is same as that of OR gate for first three rows. The only modification is in the 

fourth row. That means, the output (Y) is zero instead of one, when both the inputs are one, 

since the inputs having even number of ones. 

Therefore, the output of Ex-OR gate is ‘1’, when only one of the two inputs is ‘1’. And it is 

zero, when both inputs are same. 

Below figure shows the symbol of Ex-OR gate, which is having two inputs A, B and one 

output, Y. 

 

Ex-OR gate operation is similar to that of OR gate, except for few combination(s) of inputs. 

That’s why the Ex-OR gate symbol is represented like that. The output of Ex-OR gate is ‘1’, 

when odd number of ones present at the inputs. Hence, the output of Ex-OR gate is also 

called as an odd function. 



Parity Bit Generator 

There are two types of parity bit generators based on the type of parity bit being 

generated. Even parity generator generates an even parity bit. Similarly, odd parity 

generator generates an odd parity bit. 

Even Parity Generator 

Now, let us implement an even parity generator for a 3-bit binary input, WXY. It generates 

an even parity bit, P. If odd number of ones present in the input, then even parity bit, P 

should be ‘1’ so that the resultant word contains even number of ones. For other 

combinations of input, even parity bit, P should be ‘0’. The following table shows the Truth 

table of even parity generator. 

Binary Input WXY Even Parity bit P 

000 0 

001 1 

010 1 

011 0 

100 1 

101 0 

110 0 

111 1 

From the above Truth table, we can write the Boolean function for even parity bit as 

P={W}'{X}'Y+{W}'X{Y}'+W{X}'{Y}'+WXY 

The following figure shows the circuit diagram of even parity generator. 

 

This circuit consists of two Exclusive-OR gates having two inputs each. First ExclusiveOR 

gate having two inputs W & X and produces an output W ⊕ X. This output is given as one 

input of second Exclusive-OR gate. The other input of this second Exclusive-OR gate is Y 

and produces an output of W ⊕ X ⊕ Y. 

Odd Parity Generator 

If even number of ones present in the input, then odd parity bit, P should be ‘1’ so 

that the resultant word contains odd number of ones. For other combinations of input, odd 

parity bit, P should be ‘0’. 



Follow the same procedure of even parity generator for implementing odd parity generator. 

The circuit diagram of odd parity generator is shown in the following figure. 

 

The above circuit diagram consists of Ex-OR gate in first level and Ex-NOR gate in second 

level. Since the odd parity is just opposite to even parity, we can place an inverter at the 

output of even parity generator. In that case, the first and second levels contain an ExOR 

gate in each level and third level consist of an inverter. 

Parity Checker 

There are two types of parity checkers based on the type of parity has to be 

checked. Even parity checker checks error in the transmitted data, which contains message 

bits along with even parity. Similarly, odd parity checker checks error in the transmitted 

data, which contains message bits along with odd parity. 

Even parity checker 

Now, let us implement an even parity checker circuit. Assume a 3-bit binary input, 

WXY is transmitted along with an even parity bit, P. So, the resultant word (data) contains 4 

bits, which will be received as the input of even parity checker. 

It generates an even parity check bit, E. This bit will be zero, if the received data contains 

an even number of ones. That means, there is no error in the received data. This even parity 

check bit will be one, if the received data contains an odd number of ones. That means, there 

is an error in the received data. 

The following table shows the Truth table of an even parity checker. 

4-bit Received Data WXYP Even Parity Check bit E 

0000 0 

0001 1 

0010 1 

0011 0 

0100 1 

0101 0 

0110 0 

0111 1 

1000 1 

1001 0 



1010 0 

1011 1 

1100 0 

1101 1 

1110 1 

1111 0 

From the above Truth table, we can observe that the even parity check bit value is ‘1’, when 

odd number of ones present in the received data. That means the Boolean function of even 

parity check bit is an odd function. Exclusive-OR function satisfies this condition. Hence, 

we can directly write the Boolean function of even parity check bit as 

E=W +X + Y + P 

The following figure shows the circuit diagram of even parity checker. 

 

This circuit consists of three Exclusive-OR gates having two inputs each. The first level 

gates produce outputs of W + X & Y + P. The Exclusive-OR gate, which is in second level 

produces an output of W + X + Y + P. 

Odd Parity Checker 

Assume a 3-bit binary input, WXY is transmitted along with odd parity bit, P. So, the 

resultant word (data) contains 4 bits, which will be received as the input of odd parity 

checker. 

It generates an odd parity check bit, E. This bit will be zero, if the received data contains 

an odd number of ones. That means, there is no error in the received data. This odd parity 

check bit will be one, if the received data contains even number of ones. That means, there 

is an error in the received data. 

Follow the same procedure of an even parity checker for implementing an odd parity 

checker. The circuit diagram of odd parity checker is shown in the following figure. 

 

The above circuit diagram consists of Ex-OR gates in first level and Ex-NOR gate in second 

level. Since the odd parity is just opposite to even parity, we can place an inverter at the 



output of even parity checker. In that case, the first, second and third levels contain two Ex-

OR gates, one Ex-OR gate and one inverter respectively. 

REVIEW QUESTIONS 

1) Write associate and commutative law. 

2) Define multiplexer. 

3) Explain in detail about seven segment decoder. 

4) Define karnaugh map. 

5) How to fine pair, quad and octet in k-map. 

6) Explain about don’t care condition. 

7) Explain about parity checker. 

8) Discuss about XOR gates. 

 


