

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A+ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23EET202 / DIGITAL ELECTRONICS AND INTEGRATED CIRCUITS II YEAR / IV SEMESTER UNIT-I: MINIMIZATION TECHNIQUES AND GATES

Topic: BOOLEAN ALGEBRA MINIMIZATION

Dr. R. Senthil Kumar

Associate Professor

Dept of EEE

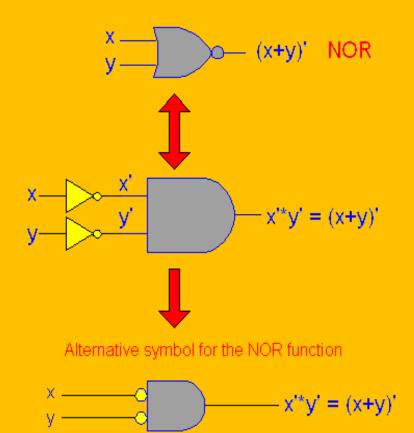
TOPIC OUTLINE

Logic Gates Boolean Algebra Postulates and Laws Demorgan's Theorem Duality Principle Min / Max Terms **Boolean Expressions**

DE MORGANS THEOREM

Statement:

1. (x+y)' = x' * y' 2. (x*y)' = x' + y'


x	У	x+y	(x+y)'	Χ'	Y'	x' * y′
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Truth table verification

DE MORGANS THEOREM

Statement: 1. (x+y)' = x' * y' 2. (x*y)' = x' + y'

Logical verification

DUALITY PRINCIPLE

Statement: It states that replacing OR into AND, AND into OR, 0s into 1s, 1s into 0s.....the expression remains same.

	Function	Dual
Commutation	A+B=B+A	AB+BA
Association	A + (B + C) = (A + B) + C	A(BC) = (AB)C
Distribution	A + BC = (A + B)(A + C)	A(B+C) = AB+AC
Absorption	A + AB = A	A(A+B)=A
De Morgan	$\overline{A+B} = \overline{A} \cdot \overline{B}$	$\overline{AB} = \overline{A} + \overline{B}$
Consensus	$AC + B\overline{C} =$	$(A+C)(B+\overline{C}) =$
	AB+AC+B̄C	$(A+B)(A+C)(B+\overline{C})$

MIN / MAX TERM

• **STANDARD FORM:**

- A Minterm is a product which consists of all the literals in the normal form or the complement form but NOT BOTH
- A Maxterm is a sum which consists of all the literals in the normal form or the complement form but NOT BOTH

• CANONICAL FORM:

- SOP (Sum of Product) consist of any number of literals arranged in product and it is added together
- POS (Product of Sum) consist of any number of literals arranged in sum and it is multiplied together

MIN / MAX TERM

Va	Variable Minterm		Maxterm			
х	У	z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m ₀	x+y+z	Mo
0	0	1	x'y'z	m ₁	x+y+z'	M ₁
0	1	0	x'yz'	m ₂	x+y'+z	M ₂
0	1	1	x'yz	m ₃	x+y'+z'	M ₃
1	0	0	xy'z'	m ₄	x'+y+z	M_4
1	0	1	xy'z	m ₅	x'+y+z'	M ₅
1	1	0	xyz'	m ₆	x'+y'+z	M ₆
1	1	1	xyz	m ₇	x'+y'+z'	M ₇

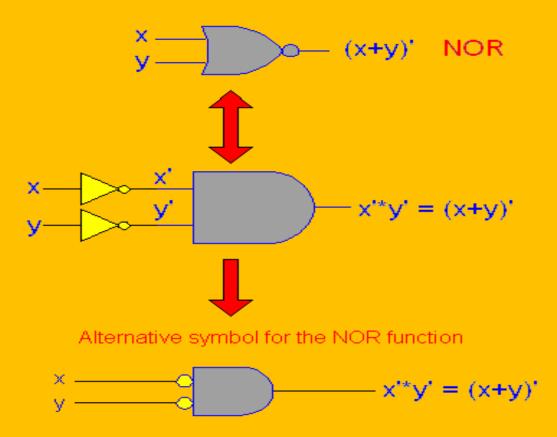
MIN / MAX TERM

- Conversion to Minterms
- **E.g.:** f(a,b,c) = a' + bc' + ab'c
- To convert a' to a minterm, the 2 variables (b, c) must be added, without changing its functionality .
- Since a'=a'•1 & 1 = b+b', a'= a'(b + b') = a'b + a'b'
- Similarly, a'b = a'b(c + c') = a'bc + a'bc' and
- a'b' = a'b'(c+c') = a'b'c + a'b'c'
- bc' = bc'(a+a') = abc' + a'bc'
- **Ans:** f = a'bc+a'bc'+a'b'c+a'b'c'+abc'+a'bc'+abc'

BOOLEAN EXPRESSION

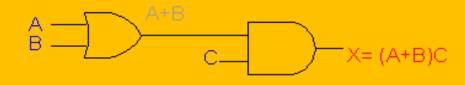
$$F(x,y,z) = \overline{x}y\overline{z} + \overline{x}yz + x\overline{y}\overline{z} + xy\overline{z} + xy\overline{z}$$

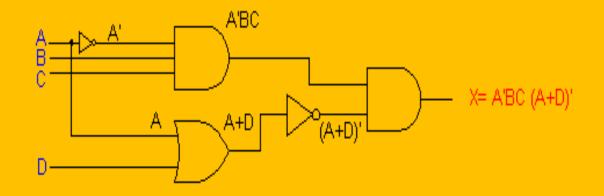
We note that this function is not in simplest terms. Our aim is only to rewrite our function in canonical sum-of-products form.


$$F(x,y,z) = x\overline{z}+y$$

У	z	xīz+y
0	0	0
0	1	0
1	0	1
1	1	1
0	0	1
0	1	0
1	0	1
1	1	1
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

BOOLEAN LOGICAL EXPRESSION


23EET202 / DELIC / R.Senthil Kumar / EEE



BOOLEAN LOGICAL EXPRESSION

