

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035. TAMIL NADU

DEPARTMENT OF MATHEMATICS

Contra possifive and Inverse puopossition: Conveise, Dett: : IS P > Q, then Q > P B called Us converse its contraposeteve TR->TP & called 7p->7a & called Us Invotee. conditional proposition and its contrapositive Remarks: loggically equivalent. ie, $(P \rightarrow a) \Leftrightarrow (7a \rightarrow 7P)$ ij. The The conditional proposition and its convoise are $\log^{9} \operatorname{cally} = \operatorname{equivalen}_{\pm}$, i.e., $(P \rightarrow a) \Leftrightarrow (a \rightarrow P)$ ii]. not Example: tor the J. Obtain convoise, contraposettive and inverse statement " Team Inclea 109ns whenever Dhone B a captain " P: Dhoni B a captain NOW, Q: Team Indla WPng $P \rightarrow Q$: If Dhong is a captain, then Team India wing. (unditional) Q-> P: If toam India wins then dhorn is a captain. TQ-> TP: II the woops doos team India does not wins then albong is not a captain. (contra possitive) TP>7Q: If Dhora is not a captain then team 1 notes do es not 2]. Obtalls "If the raises then the crops coll geow. P: It lains A: THE COOPS WALL GALOW. . ATOS WITH 99000 p→Q: If growing then the works Q→P: IZ the cups will glow then it lains (A→P: IT the coops will bot glow then it does TQ->7P: Ib the cops well bot gloco then bot sains TP-> TQ: If it does not lating then the clops will

Discrete Mathematics

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

Other connectives: (i) NAND -> a combanation of NOT & AND P. depend by T
(ii) NOR $\rightarrow a$ combroat ton of NOT & OR
α in β α β α β
$P \uparrow Q = T(P \land Q)$ and $P \lor Q = T(P \lor Q)$ Normal forms:
Normal forms: The statement wscltter 9n the standard forms. Finterno 96 V, A and T then 92 is called the normal forms. Note: (i) conjunction (A) is denoted as preduct. (ii) Stisjunction (V) is denoted as burn.
Elementary product: A pdt. of the variables and there hegations if 910 a formula is called an elementary product. Eg: P, TPAB, TRAP, PATP, RATP
Elementary sum: A sum of the variables and thely negations The a formula is called an elementary sum.
E9: P, TPVQ, TEVP, THUS Disjunctive Normal form (DNF) A statement formula which is equivalent to a given formula and which consists of a serm of elementary products is called a Disjunctive normal torm of the given formula.
DNF = (Elementary) V (Elementary) VV (product)
Confunctive Normal form: A statement formula which is equivalent to a given formula and which consists of a preduct of elementary sum is called a confunctive normal form. eNF = (file mentary) (file mentary) (file mentary) Sum) (file mentary) (file mentary).

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

phain the DNF and CNF of the formula P> [(P>Q) A 7 [TQV7P] DNF : $P \rightarrow [(P \rightarrow Q) \land 7 (T Q \lor T P)]$ materpal ⇒ TP V [(P→a) AT (TQVTP)] Materia material > TP V [(TPVQ) A T (TQVTP)] Implacation laws = TP V [(TPV Q) A (QAP)] Demarganis law > TP V [(TP A (QAP)) V (QA (QAP))] PRSTOP but Pre law ← TP V [TP ∧ (Q ∧ P)] V [(Q ∧ Q) ∧ P] A&SO Gatfive laws ↔ JP V [JPA (QAPS] V [QAP] Idempotent law material implication law J CNF: $P \rightarrow [(P \rightarrow Q) \land T (TQVTP)]$ Demolgan's law > TP V [(TPVQ) A T (T(QAP))] Double Negation Jaco ⇒ TPV [(TPVQ) ∧ (QAP)] pastorbutive law ⇔ FIPV (JPVQ)] ∧ [JPV(QAP)] Idempotent law ⇒ [TPVQ] ∧ [TPV (QAP)] Distributive law (TPVQ) ∧ [(TPVQ) ∧ (TPVP)] (TPVQ) A (TPVQ) A (TPVP) 今 (IPVQ) A (TPVP) 2]. Obtain a DNF OB PA (P>Q) <>>(PATP) V (PAQ) Distogbutieve $P_{\Lambda}(P \rightarrow Q) \Leftrightarrow P_{\Lambda}(TPVQ)$ NOW Slince the grover statement for mula is would then goterms of sum of elementary products.

