

IRON –CARBON PHASE DIAGRAM

Definition of structures:

- Various phases that appear on the Iron-Carbon equilibrium phase diagram are as under:
- Austenite
- Ferrite
- Pearlite
- Cementite
- Martensite
- Ledeburite

- **Austenite** is an interstitial solid solution of Carbon dissolved in γ (F.C.C.) iron.
- Maximum solubility is 2.0 % C at 1130°C.
- High formability, most of heat treatments begin with this single phase.
- It is normally not stable at room temperature.
 But, under certain conditions it is possible to obtain austenite at room temperature.

Austenite

Average properties are:

- □Tensile strength = 150,000 psi;
- Elongation = 10 percent in 2 in.;
- Hardness

- = Rockwell C 40, approx;

- and
- □ toughness = high

Ferrite is known as a solid solution.

- It is an interstitial solid solution of a small amount of carbon dissolved in *a* (BCC) iron.
- stable form of iron below 912 deg.C.
- The maximum solubility is 0.025 % C at 723°C and it dissolves only 0.008 % C at room temperature.
- It is the softest structure that appears on the diagram.

Average properties are: Tensile strength = 40,000 psi; = 40 % in 2 in; Elongation □Hardness > Rockwel C 0 or **Rockwell B 90**

- Pearlite is the eutectoid mixture containing 0.80 % C and is formed at 723°C on very slow cooling.
- It is a very fine platelike or lamellar mixture of ferrite and cementite.
- The white ferritic background or matrix contains thin plates of cementite (dark).

Pearlite

Average properties are: Tensile strength = 120,000 psi;

- Elongation = 20 % in 2 in.;
- Hardness = Rockwell

C20, BHN-300

- Cementite or iron carbide, is very hard, brittle intermetallic compound of iron & carbon, as Fe₃C, contains 6.67 % C.
- It is the <u>hardest structure</u> that appears on the diagram, exact melting point unknown.
- Its crystal structure is orthorhombic.
- It is has
 - Iow tensile strength (approx. 5,000 psi), buthigh compressive strength.

- Martensite a super-saturated solid solution of carbon in ferrite.
- It is formed when steel is cooled so rapidly that the change from austenite to pearlite is suppressed.
- The interstitial carbon atoms distort the BCC ferrite into a BC-tetragonal structure (BCT).; responsible for the hardness of quenched steel

- Ledeburite is the eutectic mixture of austenite and cementite.
- It contains 4.3 percent C and is formed at 1130°C.

A map of the temperature at which different phase changes occur on very slow heating and cooling in relation to Carbon, is called <u>Iron- Carbon Diagram</u>.

Iron- Carbon diagram shows -

the type of alloys formed under very slow cooling,

proper <u>heat-treatment temperature</u> and

how the properties of steels and cast irons

arious Features of Fe-C diagram

FIGURE 9.22 The iron-iron carbide phase diagram. (Adapted from *Binary* Alloy Phase Diagrams, 2nd edition, Vol. 1, T. B. Massalski, Editor-in-Chief, 1990. Reprinted by permission of ASM International, Materials Park, OH.)

Max. solubility of C in ferrite=0.022%

Max. solubility of C in %austenite=2%

• δ -iron exists between 1394°C and 1538 °C It may exist in combination with the melt to ~ 0.5 %wt C, with austenite to ~ 0.18 %wt C and in a single phase state to ~0.10 %wt C. Delta iron has the B.C.C crystal structure and is magnetic

Austenite- (γ) gamma-iron: interstitial solid solution of carbon (up to 2.14wt%) dissolved in iron with a (F.C.C) structure.
 Stable up to 1394 °C. Non-magnetic phase.

• Ferrite - (α) *alpha -iron*, which is an interstitial solid solution of a small amount (up to 0.022wt%) of carbon dissolved in iron with a B.C.C.crystal structure. Possesses polymorphic transformation to γ -iron at 912C It is the softest structure on the iron-iron carbide diagram. Magnetic below 768°C

Cementite - *iron carbide:* chemical formula, Fe_3C , contains 6.67 % wt C. It is a typical hard and brittle interstitial compound of low tensile but high compressive strength. Its crystal structure is orthorhombic. Metastable phase: at~700 °C slowly (several years) decomposes to α -iron and carbon

KON – CARBON DIAGRAM

CI CU

Peritectic, at 1490 deg.C, with low wt% C alloys (almost no engineering importance). Eutectic, at 1130 deg.C, with 4.3wt% C, alloys called cast irons. Eutectoid, at 723 deg.C with eutectoid composition of 0.8wt% C, two-phase mixture (ferrite & cementite). They are

Eutectic. Eutectoid. & Peritectic:

- Peritectic liquid and one solid phase transform to a 2nd solid phase
 - Solid₁ + Liquid \leftrightarrow Solid₂
 - $\delta + L \frac{cool}{heat}$ ß
- Eutectic liquid transforms to two solid phases

<u>Eutectoid</u> – one solid phase transforms to two other solid phases

 $\textbf{Solid}_1 \leftrightarrow \textbf{Solid}_2 \textbf{+} \textbf{Solid}_3$

$$\gamma = \frac{\cos(1)}{\ln 2} + Fe_3C$$

Liquid austenite Austenite z 1148 α -ferrite x + Austenite Austenite 912 Temperature °C + cementite 727 · · · · α -ferrite Ferrite + cementite 0 X z V 0.020 0.77 1.0 2.0 % Carbon

austenite ↔ pearlite (mixture of ferrite & cementite)

<u>adram</u>

Entectoid reaction

Pearlite

$y {\leftrightarrow} \alpha_{^+} \, Fe_3C$

- formation of the pearlite structure
 - nucleating at γ grain boundaries
 - growth by diffusion of C to achieve the compositions of α and Fe₃C (with structural changes)
 - α lamellae much thicker

Redistribution of carbon by diffusion

Austenite – 0.76 wt% C Ferrite - 0.022 wt% C Cementite - 6.70 wt% C

Chansformation in relation to Ferc

Mansformation in relation to Fe-C diagram

- In order to understand the transformation processes, consider a steel of the eutectoid composition. 0.8% carbon, being slow cooled along line *x*-*x*⁴.
- At the upper temperatures, only austenite is present, with the 0.8% carbon being dissolved in solid solution within the FCC. When the steel cools through 723°C, several changes occur simultaneously.
- The iron wants to change crystal structure from the FCC austenite to the BCC ferrite, but the ferrite can only contain 0.02% carbon in solid solution.
- The excess carbon is rejected and forms the carbonrich intermetallic known as cementite.

Schematic picture of the formation and growth of pearlite

CEMENTITE

NEEDLE LIKE STRUCTURE

MARTENSITE

Characteristics

Phase	Crystal structure	Characteristics
Ferrite	BCC	Soft, ductile, magnetic
Austenite	FCC	Soft, moderate strength, non- magnetic
Cementite	Compound of Iron & Carbon Fe ₃ C	Hard &brittle

- -Iron-Carbon alloys of 2.00%C or more are cast irons.
- -Typical composition: 2.0-4.0%C,0.5-3.0% Si, less than 1.0% Mn and less than 0.2% S.
- -Si-substitutes partially for C and promotes formation of graphite as the carbon rich component instead Fe_3C

1). Phase diagrams are useful tools to determine:-the number and types of phases, the wt% of each phase and the composition of each phase for a given T and composition Of the system. 2). Binary eutectics and binary eutectoids allow for a range of microstructures with different properties

THANK YOU