

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Department of Information Technology

19ITE305 – BIG DATA ANALYTICS

III B.Tech. IT/ VI SEMESTER

UNIT II: INTRODUCTION TO TECHNOLOGY LANDSCAPE

Topic 1: NoSQL, Comparison of SQL and NoSQL

NoSQL, Comparison of SQL and NoSQL, Hadoop - RDBMS Versus Hadoop - Distributed Computing Challenges - Hadoop Overview - Hadoop Distributed File System - Processing Data with Hadoop - Managing Resources and Applications with Hadoop YARN - Interacting with Hadoop Ecosystem

Big Data Technology Landscape

- NoSQL
- Hadoop

NoSQL

- NOT ONLY SQL
- First coined by Carlo Strozzi in 1998 Lightweight, Open Source, Relational database
- Johan Oskarsson 2009 reintroduced the term NoSQL Open Source Distributed Network

Features

- Open Source
- Mom relational
- Distributed Scheme Less
- Cluster Friendly

It is triggered by the needs of Web 2.0 companies such as Facebook, Google, and Amazon.com.

Most NoSQL databases offer a concept of "eventual consistency" in which database changes are propagated to all nodes "eventually" (typically within milliseconds).

Where is it used?

- Used in Big data and Real Time Application
- Stock log data which can then be pulled for Analysis
- Data which cannot be stored and analyzed comfortably in RDBMS

What is it?

- Stands for NOT ONLY SQL
- Non relational, Opensource, and Distributed Databases
- Dealing with variety of data Structured, Semi- Structured and Unstructured

Non relational

- Data is distributed across several nodes
- No Support of ACID
- No Fixed Table Schema

What is it?

Types of NoSQL Databases

- Broadly Classified into 2 types
 - Key value or Big Hash table
 - Schema Less

Key Value

- In a key-value NoSQL Database, all of the data within consists of an indexed key and a value
- · Examples include :
 - DynamoDB
 - Cassandra

Column Based

- In Column Based NoSQL Database, DB is designed for storing data tables as sections of columns of data, rather than as rows of data
- · Examples include :
- HBase
- · SAP HANA

Document Database

- This NoSQL
 Database
 expands the keyvalue stores where
 "documents"
 contain more
 complex in that
 they contain data
 and each document
 is assigned a
 unique key, which is
 used to retrieve
 the document
- Examples include :
- MongoDB
- · CouchDB

Graph Database

- This No SQL database IS designed for data whose relations are well represented as a graph and has elements which are interconnected, with an undetermined number of relations between them
- · Examples include :
- Polyglot
- · Neo4J

Types of NoSQL Databases


```
Sample Document in Document Database

{
"Book Name": "Fundamentals of Business Analytics",
"Publisher": "Wiley India",
"Year of Publication": "2011"
```


Popular Schema Less Databases

Key-Value Data Store	Column-Oriented Data Store	Document Data Store	Graph Data Store
Riak	Cassandra	 MongoDB 	 InfiniteGraph
• Redis	HBase	 CouchDB 	• Neo4j
 Membase 	HyperTable	 RavenDB 	 AllegroGraph

Why NoSQL?

- Scale out Architecture
- Large Volume of Structured, Semi- Structured and Unstructured
- Dynamic Scheme insert the data without pre defined Schema
- Auto Sharding Automatically Spread data Across an arbitrary number of nodes
- Replication high Availability, Fault tolerance, and Disaster Recovery

Advantage of NoSQL

- 1. Support elastic scaling:
 - a) Cluster scale: It allows distribution of database across 100+ nodes often in multiple data centers.
 - b) Performance scale: It sustains over 100,000+ database reads and writes per second.
 - c) Data scale: It supports housing of 1 billion+ documents in the database.
- Doesn't require a pre-defined schema: Does not require any adherence to pre-defined schema and supports flexible schema

Advantage of NoSQL

- 3. Cheap and easy to implement and supports benefits of scale, high availability, fault tolerance in low cost.
- Relaxes the data consistency requirements: Adopts CAP theorem
- Data can be replicated on multiple nodes and can be distributed:
 - a) Sharding: Automatically spread data across an arbitrary number of servers
 - Replication: Multiple copies of the data across the cluster.

What we miss with NoSQL?

- Does not support Joins.
- Group by
- ACID properties
- Does not have standard SQL interface. But supports MQL and CQL) [M- MongoDB, C-Cassandra]
- Does not support easy integration with other applications that support SQL.

Use of NoSQL in Industry

NoSQL is being used in varied industries. They are used to support analysis for applications such as:

- Web user data analysis
- Log analysis
- Sensor feed analysis
- Making recommendations for upsell and crosssell, etc.

Use of NoSQL in Industry

19ITE305 Big Data Analytics/ Unit 1

NoSQL Vendors

Company	Product	Most widely used by
Amazon	DynamoDB	LinkedIn, Mozilla
Facebook	Cassandra	Netflix, Twitter, eBay
Google	BigTable	Adobe Photoshop

TEXT BOOKS

Seema Acharya, Subhashini Chellappan, "Big Data and Analytics", Wiley Publications, First Edition, 2015

REFERENCES

- 1. Judith Huruwitz, Alan Nugent, Fern Halper, Marcia Kaufman, "Big data for dummies", John Wiley & Sons, Inc. (2013)
- 2. Tom White, "Hadoop The Definitive Guide", O'Reilly Publications, Fourth Edition, 2015
- 3. Dirk Deroos, Paul C.Zikopoulos, Roman B.Melnky, Bruce Brown, Rafael Coss, "Hadoop For Dummies", Wiley Publications, 2014
- 4. Robert D.Schneider, "Hadoop For Dummies", John Wiley & Sons, Inc. (2012)
- 5. Paul Zikopoulos, "Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data, McGraw Hill, 2012

