
Object Oriented Programming using Java

19CST102

2 Marks

1. Define OOPS.

Object-Oriented Programming System(OOPs) is a programming technique based

on the concept of “objects” that contain data and methods.

The six Main Principles of OOPS are Class, Object, Abstraction, Encapsulation,

Inheritance, Polymorphism.

2. Differentiate between encapsulation and abstraction.

ABSTRACTION ENCAPSULATION

Refers to showing only the necessary details

to the intended user.

Means to hide(Data Hiding) wrapping, just

hiding properties and methods.

Used in programming languages to make

abstract class

Used to hide the code and data in a single unit

to protect the data from the outside world.

Abstraction is implemented using interface

and abstract class.

Encapsulation is implemented using private

and protected access modifiers.

3. What is an Object, give an example?

★ Object is a Real world entity, which is also known as an instance of a

class. An Object consists of State(Attribute), Behaviour(Method) and

Identity(Name).

★ Example : Dog, Pen.

4. What are the various types of Looping?

 There are 4 types of looping in java, they are

● For-Loop

● While Loop

● Do While Loop

● For-each Loop

5. Enumerate the importance of Bytecode in Java.

 Bytecode can be defined as an intermediate code generated by the compiler after

the compilation of the source code(Java Program). This Intermediate code makes Java a

platform-independent language.

13 Marks

6. a) Write a detailed note on Concepts of OOPS.

● Object-Oriented Programming System(OOPs) is a programming technique based

on the concept of “objects” that contain data and methods.

● The six Main Principles of OOPS are Class, Object, Abstraction, Encapsulation,

Inheritance, Polymorphism.

1) Class

 A class is a blueprint or template that defines the properties (attributes)

and behaviors (methods) that objects of that class can have. It serves as a fundamental building

block for creating objects, encapsulating data and functionality, and enabling code reusability

and organization.

2) Object

 In Java, an object is an instance of a class that encapsulates data

(attributes) and behavior (methods). It represents a specific entity or concept based on the class

blueprint. Objects are created using the `new` keyword and can interact with other objects

through method invocations, enabling complex program structures and interactions.

3) Abstraction

 Abstraction in Java is a concept that focuses on providing a simplified,

high-level view of complex systems. It involves hiding unnecessary details and exposing only

essential features through abstract classes and interfaces. Abstraction allows for code

modularization, promotes code reuse, and facilitates the implementation of complex systems

with clear boundaries and interactions.

4) Encapsulation

 Encapsulation in Java is a mechanism that combines data (attributes) and

methods within a class, protecting data from direct access from outside. It allows for data hiding

and access control, ensuring that data is only accessed and modified through defined methods.

Encapsulation promotes code organization, security, and maintainability.

5) Inheritance

 Inheritance in Java is a mechanism that allows classes to inherit properties

and behaviors from other classes. It establishes a parent-child relationship between classes,

where the child class (subclass) inherits the attributes and methods of the parent class

(superclass). Inheritance promotes code reuse, hierarchical organization, and supports

specialization and generalization of objects.

 6) Polymorphism

● “Polymorphism” means “Many Forms”. In simple words, we can define

polymorphism as the ability of a message to be displayed in more than one

form.

● Real-life Illustration Polymorphism: A person at the same time can have

different characteristics. Like a man at the same time is a father, a

husband, and an employee. So the same person possesses different

behavior in different situations. This is called polymorphism.

6. B) Define static members, datatype, variables using Java.

 In Java, static members, data types, and variables can be defined as

follows:

1. Static Members: Static members are class-level elements that are shared among all

instances of the class. They are associated with the class itself rather than individual

objects. Static members include static variables (also known as class variables) and static

methods. They are accessed using the class name followed by the member name (e.g.,

ClassName.staticMember).

2. Data Types: Data types in Java define the kind of values that variables can hold. Java

has two main categories of data types: primitive data types and reference data types.

Primitive data types include int, double, boolean, char, etc., which hold simple values.

Reference data types include classes, interfaces, arrays, and enumerated types.

3. Variables: Variables in Java are used to store and manipulate data. They have a

specific data type, a unique name, and a value associated with them. Variables can be

classified as local variables, instance variables (non-static member variables), and static

variables (static member variables). Local variables are defined within methods or

blocks, instance variables are declared in a class but outside methods, and static variables

are associated with the class and shared among instances.

Here's an example demonstrating the usage of static members, data types, and variables

in Java:

public class MyClass {

 // Static variable

 static int staticVar = 10;

 // Instance variable

 int instanceVar = 20;

 // Static method

 static void staticMethod() {

 System.out.println("This is a static method.");

 }

 public static void main(String[] args) {

 // Local variable

 int localVar = 30;

 // Accessing static variable

 System.out.println("Static Variable: " + staticVar);

 // Creating object of MyClass

 MyClass obj = new MyClass();

 // Accessing instance variable

 System.out.println("Instance Variable: " + obj.instanceVar);

 // Accessing local variable

 System.out.println("Local Variable: " + localVar);

 // Calling static method

 staticMethod();

 }

}

In this example, `staticVar` is a static variable, `instanceVar` is an instance variable,

`localVar` is a local variable, and `staticMethod()` is a static method. The main method

demonstrates accessing these variables and invoking the static method.

7. A) Define Constructor and its types.

 Constructors in Java are special methods with the same name as the class.

They initialize objects by assigning initial values and can be overloaded to create objects with

different parameter sets.

 There are three types of constructor in java, they are

 1. Default constructor

 2. Parameterized constructor

3. Copy constructor

1. Default Constructor

 A constructor that has no parameters is known as default the constructor.

A default constructor is invisible. And if we write a constructor with no arguments, the

compiler does not create a default constructor. It is taken out. It is being overloaded and

called a parameterized constructor. The default constructor changed into the

parameterized constructor. But Parameterized constructor can’t change the default

constructor.

// Java Program to demonstrate Default Constructor

import java.io.*;

class DefaultConstructor{

 // Default Constructor

 DefaultConstructor() {

System.out.println("Default constructor");

}

 public static void main(String[] args)

 {

 DefaultConstructor obj = new DefaultConstructor();

 }

}

2. Parameterized Constructor

 A constructor that has parameters is known as a parameterized

constructor. If we want to initialize fields of the class with our own values, then use a

parameterized constructor.

// Java Program for Parameterized Constructor

import java.io.*;

class Geek {

 // data members of the class.

 String name;

 int id;

 Geek(String name, int id)

 {

 this.name = name;

 this.id = id;

 }

}

class GFG {

 public static void main(String[] args)

 {

 // This would invoke the parameterized constructor.

 Geek geek1 = new Geek("avinash", 68);

 System.out.println("GeekName :" + geek1.name

 + " and GeekId :" + geek1.id);

 }

}

3. Copy Constructor

 Unlike other constructors, a copy constructor is passed with

another object which copies the data available from the passed object to the newly

created object.

// Java Program for Copy Constructor

import java.io.*;

class Geek {

 // data members of the class.

 String name;

 int id;

 // Parameterized Constructor

 Geek(String name, int id)

 {

 this.name = name;

 this.id = id;

 }

 // Copy Constructor

 Geek(Geek obj2)

 {

 this.name = obj2.name;

 this.id = obj2.id;

 }

}

class GFG {

 public static void main(String[] args)

 {

 // This would invoke the parameterized constructor.

 System.out.println("First Object");

 Geek geek1 = new Geek("avinash", 68);

 System.out.println("GeekName :" + geek1.name

 + " and GeekId :" + geek1.id);

 System.out.println();

 // This would invoke the copy constructor.

 Geek geek2 = new Geek(geek1);

 System.out.println(

 "Copy Constructor used Second Object");

 System.out.println("GeekName :" + geek2.name

 + " and GeekId :" + geek2.id);

 }

}

7. B) Define JDK and JVM in Detail.

Parameter JDK JVM

Full-Form The JDK is an abbreviation

for Java Development Kit.

The JVM is an abbreviation

for Java Virtual Machine.

Definition The JDK (Java Development

Kit) is a software

development kit that

develops applications in

Java. Along with JRE, the

JDK also consists of various

development tools (Java

Debugger, JavaDoc,

compilers, etc.)

The Java Virtual Machine

(JVM) is a platform-

independent abstract

machine that has three

notions in the form of

specifications. This

document describes the

requirement of JVM

implementation.

Functionality The JDK primarily assists in

executing codes. It primarily

functions in development.

JVM specifies all of the

implementations. It is

responsible for providing all

of these implementations to

the JRE.

Platform Dependency The JDK is platform-

dependent. It means that for

every different platform, you

require a different JDK.

The JVM is platform-

independent. It means that

you won’t require a different

JVM for every different

platform.

Tools Since JDK is primarily

responsible for the

development, it consists of

various tools for debugging,

monitoring, and developing

java applications.

JVM does not consist of any

tools for software

development.

Implementation JDK = Development Tools +

JRE (Java Runtime

Environment)

JVM = Only the runtime

environment that helps in

executing the Java

bytecode.

Why Use It? Why use JDK?

Some crucial reasons to

use JDK are:

● It consists of various
tools required for
writing Java
programs.

● JDK also contains
JRE for executing
Java programs.

● It includes an
Appletviewer, Java
application launcher,
compiler, etc.

● The compiler helps in
converting the code
written in Java into
bytecodes.

● The Java application
launcher helps in
opening a JRE. It
then loads all of the
necessary details
and then executes all
of its main methods.

Why use JVM?

Some crucial reasons to

use JVM are:

● It provides its users
with a platform-
independent way for
executing the Java
source code.

● JVM consists of
various tools,
libraries, and
multiple frameworks.

● The JVM also comes
with a Just-in-Time
(JIT) compiler for
converting the Java
source code into a
low-level machine
language. Thus, it
ultimately runs faster
than any regular
application.

● Once you run the
Java program, you
can run JVM on any
given platform to
save your time.

Features Features of JDK

● Here are a few crucial
features of JDK:

● It has all the features
that JRE does.

● JDK enables a user
to handle multiple
extensions in only
one catch block.

● It basically provides
an environment for
developing and
executing the Java
source code.

● It has various
development tools
like the debugger,
compiler, etc.

● One can use the
Diamond operator to
specify a generic
interface in place of
writing the exact one.

● Any user can easily
install JDK on Unix,
Mac, and Windows
OS (Operating
Systems).

Features of JVM

Here are a few crucial

features of JVM:

● The JVM enables a
user to run
applications on their
device or in a cloud
environment.

● It helps in converting
the bytecode into
machine-specific
code.

● JVM also provides
some basic Java
functions, such as
garbage collection,
security, memory
management, and
many more.

● It uses a library along
with the files given
by JRE (Java
Runtime
Environment) for
running the program.

● Both JRE and JDK
contain JVM.

● It is easily
customizable. For
instance, a user can
feasibly allocate a
maximum and
minimum memory to
it.

● JVM can also
execute a Java
program line by line.
It is thus also known
as an interpreter.

14 Marks

8. write a Java Program to create a calculator using Switch Statement

//Java Program to create a Calculator using Switch Statement

import java.util.Scanner;

public class SimpleCalculator{

public static void main(String[] args){

 double num1,num2;

 Scanner scanner = new Scanner(System.in);

 System.out.print("Enter First number:");

 num1 = scanner.nextDouble();

 System.out.println("Enter Second number:");

 num2 = scanner.nextDouble();

 System.out.println("Enter an Operator (+ , - , * , /):");

 char operator = scanner.next().charAt(0);

 scanner.close();

 double output;

 switch(operator){

 case '+':

 output = num1+num2;

 break;

 case '-':

 output = num1-num2;

 break;

 case'*':

 output = num1 * num2;

 break;

 case '/':

 output = num1/num2;

 break;

 default:

 System.out.printf("You have entered wrong operator");

 return;

}

 System.out.println(num1+" "+operator+" "+num2+": "+output);

}

}

9. Java program to Print all the Departments of SNS College of Technology

using array and for-loop.

public class SNScollege {

 public static void main(String[] args) {

 String[] Department = {"AIML", "IT", "CSE", "ECE", "EEE",

"MECH", "CIVIL", "FT", "AGRI", "AUTO", "AEROSPACE", "MCT", "BME"};

 // Display the department names

 System.out.println("Departments in SNS College:");

 for (int i = 0 ; i<=12 ; i++) {

 System.out.println(Department[i]);

 }

 }

}

