

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION)

Approved by AICTE & Affiliated to Anna University Accredited by NBA & Accrediated by NAAC with 'A+' Grade, Recognized by UGC saravanampatti (post), Coimbatore-641035.

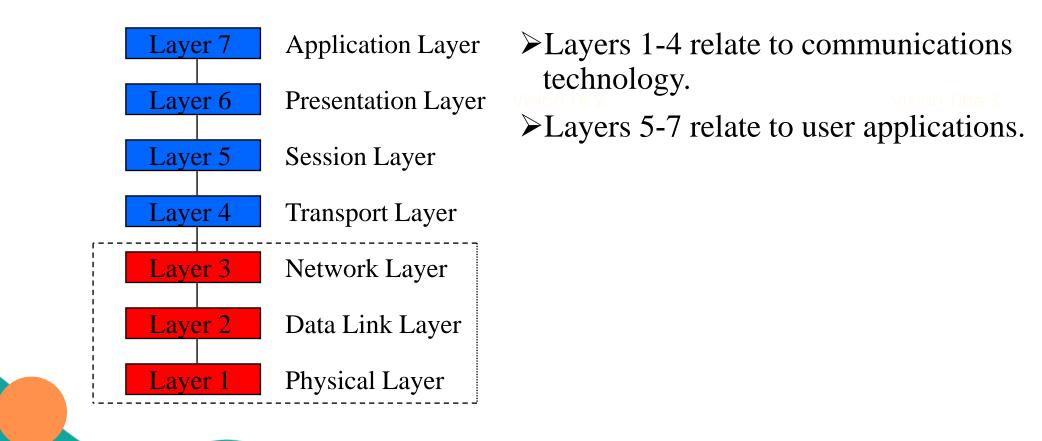
Department of Biomedical Engineering

Vision Tit 2

Vision Title 3

Course Name: 19BMO401 & TELEHEALTH TECHNOLOGY

IV Year : VII Semester


Unit 3 -TELEMEDICAL STANDARDS

Topic :ISO-OSI

OVERVIEW

LAYER 7: APPLICATION LAYER

- ▶ Level at which applications access network services.
- Represents services that directly support software applications for file transfers, database
 access, and electronic mail etc.
 Vision Tit 2
 Vision Tit 3
 LAYER 6: PRESENTATION LAYER
- Related to representation of transmitted data
 - Translates different data representations from the Application layer into uniform standard format
- Providing services for secure efficient data transmission
 - e.g. data encryption, and data compression.

LAYER 5: SESSION LAYER

- Allows two applications on different computers to establish, use, and end a session.
 - ➢ e.g. file transfer, remote login
- Establishes dialog control
 - Regulates which side transmits, plus and how long it transmits.
- > Performs token management and synchronization.

LAYER 4: TRANSPORT LAYER

- Manages transmission packets
 - Repackages long messages when necessary into small packets for transmission
 - Reassembles packets in correct order to get the original message.
 - Handles error recognition and recovery.
 - > Transport layer at receiving acknowledges packet delivery.
 - Resends missing packets

•Layer 3: Network Layer

- Manages addressing/routing of data within the subnet
 - Addresses messages and translates logical addresses and names into physical addresses.
 - Determines the route from the source to the destination computer
 Vision Title 3
 - Manages traffic problems, such as switching, routing, and controlling the congestion of data packets.
- Routing can be:
 - Based on static tables
 - \blacktriangleright determined at start of each session
 - Individually determined for each packet, reflecting the current network load.

LAYER 1: PHYSICAL LAYER

- > Transmits bits from one computer to another
- \succ Regulates the transmission of a stream of bits over a physical medium.
- Defines how the cable is attached to the network adapter and what transmission technique is used to send data over the cable. Deals with issues like
 - The definition of 0 and 1, e.g. how many volts represents a 1, and how long a bit lasts?
 - ➤ Whether the channel is simplex or duplex?
 - How many pins a connector has, and what the function of each pin is?

19BM0401/ ISO-OSI/Unit 3/Mr.S.Prince Samuel/AP/BME

ision Title 3

INTERNET PROTOCOLS VS OSI

	 	_
Application		
Presentation	Application	on Ti
Session		
Transport	ТСР	
Network	 IP	
Data Link	Network Interface	
Physical	Hardware	

- Explicit Presentation and session layers missing in Internet Protocols
- Data Link and Network Layers redesigned

- Reliable services never lose/corrupt data.
- Reliable service costs more.
- > Typical application for reliable service is file transfer.
- > Typical application not needing reliable service is voice traffic.
- ➢ Not all applications need connections.

Vision Title 3