

Design of Split - Muff Coupling

Split Muff Coupling

Muff and Split Muff Coupling /19MET 301-Design of Machine Element /G.Tharanitharan/AP/Mech/SNSCT

Source: Text book by RS Khurmi

Design of Rigid Flange Coupling

(d): Diameter of shaft (D):Diameter of Hub (w):Width of key (h):Height of key (1):Length of key (L):Length of hub (D):Outside diameter (d_c) :Core diameter (d_b) :Nominal diameter

Muff and Split Muff Coupling /19MET 301-Design of Machine Element /G.Tharanitharan/AP/Mech/SNSCT

Design of Shaft

Parameter to be calculated	Stress Induced	Equation
Diameter of shaft (d):	Maximum shear	
	stress	16T
	(τ_{max})	$\tau_{max} = \frac{1}{\pi d^3}$

Muff and Split Muff Coupling /19MET301-Design of Machine Element /G.Tharanitharan/AP/Mech/SNSCT

Source:Indiamart.com

Shaft

Design of Key

Parameter to be calculated

Stress Induced

Key dimensions: i. Width of key (w) ii.Height of key (h) iii.Length of key (l)

By proportion By proportion

 (σ_{c})

- By proportion
- Direct shear stress (τ_d) • Crushing stress

w=d/4

h = (2/3)w

h=w

Source:Researchgate.com

Equation

for rectangular key

for square key 1 = L/2 = 1.75d

Rectangular Key

Design of Hub

Parameter to be calculated

Stress Induced

Dimensions of hub: i. Length of hub (l) ii.Outside diameter (D) iii.Stress in hub

By proportion By proportion Torsional shear stress (τ_h)

D=2d

 $\tau_h = -$

Muff and Split Muff Coupling /19MET301-Design of Machine Element /G.Tharanitharan/AP/Mech/SNSCT

Equation

SourceIndianmart.com

l is taken as length of key

$$\frac{16T}{tD^3(1-K^4)}$$

Split Muff

Design of Sleeve Bolt

Parameter to be calculated	Stress Induced	Equation
Dimensions of clampin bolts:	g	
i. Core diameter(d _c)	Tensile stress(σ_t)	
i. Nominal diameter (d _b)	By proportion	$d_c = \sqrt{\frac{16T}{\pi^2 \mu N c}}$

d_b=d_c/0.84

Source:indianmart.com

 $d\sigma_t$

Bolts and Nuts

References

- □ https://www.machinedesign.com/archive/article/21 817862/best-sites-on-the-web
- □ https://www.machinedesignonline.com
- □ https://www.quora.com/What-are-the-websites-amachine-design-lover-should-visit
- https://imechanica.org/files/theories%20of%20failu re.pdf

Thank You

16/16