
sNs COLLEGE OF TECHNOLOGY
(An Autonomous institution)

COIMBATORE-641 035

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND

MACHINE LEARNING

Unit 3

INTRODUCTION TO MONGODB AND CASSANDRA

Why Mongo DB

MongoDB makes it easy for developers to store structured or unstructured

data. MongoDB is a document database built on a horizontal scale-out

architecture that uses a flexible schema for storing data. Instead of storing data in

tables of rows or columns like SQL databases, each record in a MongoDB

database is a document described in BSON, a binary representation of the data.

Applications can then retrieve this information in a JSON format.

MongoDB is a cross-platform, document oriented database that provides,

high performance, high availability, and easy scalability. MongoDB works on

concept of collection and document. Database Database is a physical container

for collections. Each database gets its own set of files on the file system. A single

MongoDB server typically has multiple databases. Collection Collection is a

group of MongoDB documents. It is the equivalent of an RDBMS table. A

collection exists within a single database. Collections do not enforce a schema.

Documents within a collection can have different fields. Typically, all documents

in a collection are of similar or related purpose. Document A document is a set of

key-value pairs. Documents have dynamic schema. Dynamic schema means that

documents in the same collection do not need to have the same set of fields or

https://www.mongodb.com/nosql-explained/nosql-vs-sql

structure, and common fields in a collection's documents may hold different types

of data.

Key Features of MongoDB

 Document-oriented Database

 Stores data in BSON-like documents.

 Schema Less database.

 It provides horizontal scalability with the help of sharding.

 It provides high availability and redundancy with the help

of replication.

 It allows one to perform operations on the grouped data and get a

single result or computed result.

 It has very high performance.

MongoDB Architecture and its Components

MongoDB’s architecture design involves several important parts that

work together to create a strong and flexible database system. these

are the following MongoDB’s architecture

https://www.geeksforgeeks.org/difference-between-json-and-bson/
https://www.geeksforgeeks.org/what-is-sharding/

1. Drivers & Storage Engine

MongoDB store the data on the server but that data we will try to

retrieve from our application. So that time how the communication is

happening between our application and MongoDB server.

Any application which is written in python, .net and java or any kind

of frontend application, these application are trying to access the data

from these physical storage in server. First they will interact with

driver which will communicate with MongoDB server. What happen

is once the request is going from the frontend application through

the driver then driver will change appropriate query by using query

https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/java/

engine and then the query will get executed in MongoDB data model.

Left side is security which provides security to the database that who

will access the data and right side is management this management

will manage all these things.

Drivers

Drivers are client libraries that offer interfaces and methods for

applications to communicate with MongoDB databases. Drivers will

handle the translation of documents between BSON objects and

mapping application structures.

.NET, Java, JavaScript, Node.js, Python, etc are some of the widely

used drives supported by MongoDB.

Storage Engine

The storage engine significantly influences the performance of

applications, serving as an intermediary between the MongoDB

database and persistent storage, typically disks. MongoDB supports

different storage engines:

 MMAPv1 – It is a traditional storage engine based on memory

mapped files. This storage engine is optimized for workloads with

high volumes of read operations, insertions, and in-place updates.

It uses B-tress to store indexes. Storage Engine works on multiple

reader single writer lock. A user cannot have two write calls to be

processes in parallel on the same collection. It is fast for reads and

slow for writes.

 Wired Tiger – Default Storage Engine starts

from MongoDB 3version. No locking Algorithms like hash

pointer. It yields 7x-10x better write operations and 80% of the file

system compression than MMAP.

 InMemory – Instead of storing documents on disk, the engine uses

in-memory for more predictable data latencies. It uses 50% of

physical RAM minimum 1 GB as default. It requires all its data.

When dealing with large datasets, the in-memory engine may not

be the most suitable choice.

2. Security

https://www.geeksforgeeks.org/what-is-database/
https://www.geeksforgeeks.org/javascript/
https://www.geeksforgeeks.org/nodejs/
https://www.geeksforgeeks.org/introduction-of-b-tree-2/
https://www.geeksforgeeks.org/what-is-mongodb-working-and-features/

 Authentication

 Authorization

 Encryption on data

 Hardening (Ensure only trusted hosts have access)

3. MongoDB Server

It serves as the central element and is in charge

of maintaining, storing, and retrieving data from the database

through a number of interfaces. The system’s heart is the MongoDB

server. Each mongod server instance is in charge of handling client

requests, maintaining data storage, and performing database

operations. Several mongod instances work together to form a cluster

in a typical MongoDB setup.

4. MongoDB Shell

For dealing with MongoDB databases, MongoDB provides the

MongoDB Shell command-line interface (CLI) tool. The ability to

handle and query MongoDB data straight from the terminal is robust

and flexible. After installing MongoDB, you may access

the MongoDB Shell, often known as mongo. It interacts with the

database using JavaScript-based syntax. Additionally, it has built-in

help that shows details about possible commands and how to use them.

5. Data Storage in MongoDB

5.1 Collections

A database can contain as many collections as it wishes, and

MongoDB stores data inside collections.

As an example, a database might contain three collections a user’s

collection, a blog post collection, and a comments collection. The

user collection would hold user data and documents, the blog post

collection would hold blog posts and documents, and the comments

collection would hold documents related to comments. This would

allow for the easy retrieval of all the documents from a single

collection.

https://www.geeksforgeeks.org/difference-between-cli-and-gui/
https://www.geeksforgeeks.org/mongodb-query-documents-using-mongo-shell/

5.2 Documents

Documents themselves represent the individual records in a specific

collection.

For example inside the blog posts collection we’d store a lot of blog

post documents and each one represents a single blog post now the

way that data is structured inside a document looks very much like

a JSON object with key value pairs but actually it’s being stored as

something called BSON which is just binary JSON.

6. Indexes

Indexes are data structures that make it simple to navigate across the

collection’s data set. They help to execute queries and find documents

that match the query criteria without a collection scan.

These are the following different types of indexes in MongoDB:

6.1 Single field

MongoDB can traverse the indexes either in

the ascending or descending order for single-field index

db.students.createIndex({“item”:1})

In this example, we are creating a single index on the item field and 1

here represents the filed is in ascending order.

A compound index in MongoDB contains multiple single filed

indexes separated by a comma. MongoDB restricts the number of

fields in a compound index to a maximum of 31.

db.students.createIndex({“item”: 1, “stock”:1})

Here, we create a compound index on item: 1, stock:1

6.2 Multi-Key

When indexing a filed containing an array value, MongoDB

creates separate index entries for each array component. MongoDB

allows you to create multi-key indexes for arrays containing scalar

values, including strings, numbers, and nested documents.

db.students.createIndex({<filed>: <1 or -1>})

6.3 Geo Spatial

Two geospatial indexes offered by MongoDB are called 2d

indexes and 2d sphere indexes. These indexes allow us to query

https://www.geeksforgeeks.org/json/

geospatial data. On this case, queries intended to locate data stored on

a two-dimensional plane are supported by the 2d indexes. On the other

hand, queries that are used to locate data stored in spherical geometry

are supported by 2D sphere indexes.

6.4 Hashed

To maintain the entries with hashes of the values of the indexed field

we use Hash Index. MongoDB supports hash based sharding and

provides hashed indexes.

db.<collection>.createIndex({ item: “hashed” })

7. Replication

Within a MongoDB cluster, data replication entails keeping several

copies of the same data on various servers or nodes. Enhancing data

availability and dependability is the main objective of data

replication. A replica may seamlessly replace a failing server in the

cluster to maintain service continuity and data integrity.

 Primary Node (Primary Replica): In a replica set, the primary

node serves as the main source for all write operations. It’s the only

node that accepts write requests. The main node is where all data

modifications begin and are implemented initially.

 Secondary Nodes: Secondary nodes duplicate data from the

primary node (also known as secondary replicas). They are useful

for dispersing read workloads and load balancing since they are

read-only and mostly utilized for read activities.

8. Sharding

Sharding is basically horizontal scaling of databases as compared to

the traditional vertical scaling of adding more CPUS and ram to the

current system.

For example, you have huge set of files you might segregate it into

smaller sets for ease. Similarly what mongo database does is

it segregates its data into smaller chunks to improve the efficiency.

you have a machine with these configuration and mongo db instance

running on it storing 100 million documents.

https://www.geeksforgeeks.org/data-replication-in-dbms/
https://www.geeksforgeeks.org/what-is-sharding/

Now with time your data will grow in your mongo db instance and

suppose 100 million extra documents get added. Now to manage the

processing of these extra records you might need to add extra ram,

extra storage and extra CPU to the server. Such type of scaling is

called vertical scaling.

Now consider another situation if you have 4 small machines with

small configurations. You can divide 200 million of document into

each of the server such that each of the server might hold around 50

million documents. By dividing the data into multiple servers you

have reduced the computation requirements and such kind of scaling

is known as horizontal scaling and this horizontal scaling is known as

sharding in mongo and each of the servers S1, S2, S3, S4 are the

shards.

The partioning of data in a sharded environment is done on a range

based basis by deciding a field as a shard key.

Conclusion

The architecture of MongoDB has been thoroughly examined in this

extensive article, including its essential parts, data storage, replication,

sharding, high availability, security, scalability, and performance

optimization. MongoDB is a top choice for a wide range of

applications, from small-scale initiatives to massive, data-intensive

systems, due to its adaptable and potent design. To fully utilize

MongoDB and create reliable, scalable, and secure solutions,

developers and administrators must have a thorough understanding of

the database’s architecture.

The following table shows the relationship of RDBMS terminology with

MongoDB.

https://www.geeksforgeeks.org/random-access-memory-ram/
https://www.geeksforgeeks.org/central-processing-unit-cpu/

RDBMS MongoDB

It is a relational database.
It is a non-relational and document-

oriented database.

Not suitable for hierarchical data storage. Suitable for hierarchical data storage.

It is vertically scalable i.e increasing

RAM.

It is horizontally scalable i.e we can add

more servers.

It has a predefined schema. It has a dynamic schema.

It is quite vulnerable to SQL injection. It is not affected by SQL injection.

It centers around ACID properties

(Atomicity, Consistency, Isolation, and

Durability).

It centers around the CAP

theorem (Consistency, Availability, and

Partition tolerance).

It is row-based. It is document-based.

It is slower in comparison with

MongoDB.

It is almost 100 times faster than

RDBMS.

Supports complex joins. No support for complex joins.

It is column-based. It is field-based.

It does not provide JavaScript client for

querying.

It provides a JavaScript client for

querying.

It supports SQL query language only.
It supports JSON query language along

with SQL.

https://www.geeksforgeeks.org/relational-model-in-dbms/
https://www.geeksforgeeks.org/hierarchical-model-in-dbms/#:~:text=In%20a%20hierarchical%20model%2C%20data,parent%20record%20and%20many%20children.
https://www.geeksforgeeks.org/sql-injection-2/
https://www.geeksforgeeks.org/acid-properties-in-dbms/
https://www.geeksforgeeks.org/the-cap-theorem-in-dbms/
https://www.geeksforgeeks.org/the-cap-theorem-in-dbms/
https://www.geeksforgeeks.org/json/
https://www.geeksforgeeks.org/sql-tutorial/

	Key Features of MongoDB
	MongoDB Architecture and its Components
	1. Drivers & Storage Engine
	Drivers
	Storage Engine

	2. Security
	3. MongoDB Server
	4. MongoDB Shell
	5. Data Storage in MongoDB
	5.1 Collections
	5.2 Documents

	6. Indexes
	6.1 Single field
	6.2 Multi-Key
	6.3 Geo Spatial
	6.4 Hashed

	7. Replication
	8. Sharding
	Conclusion

