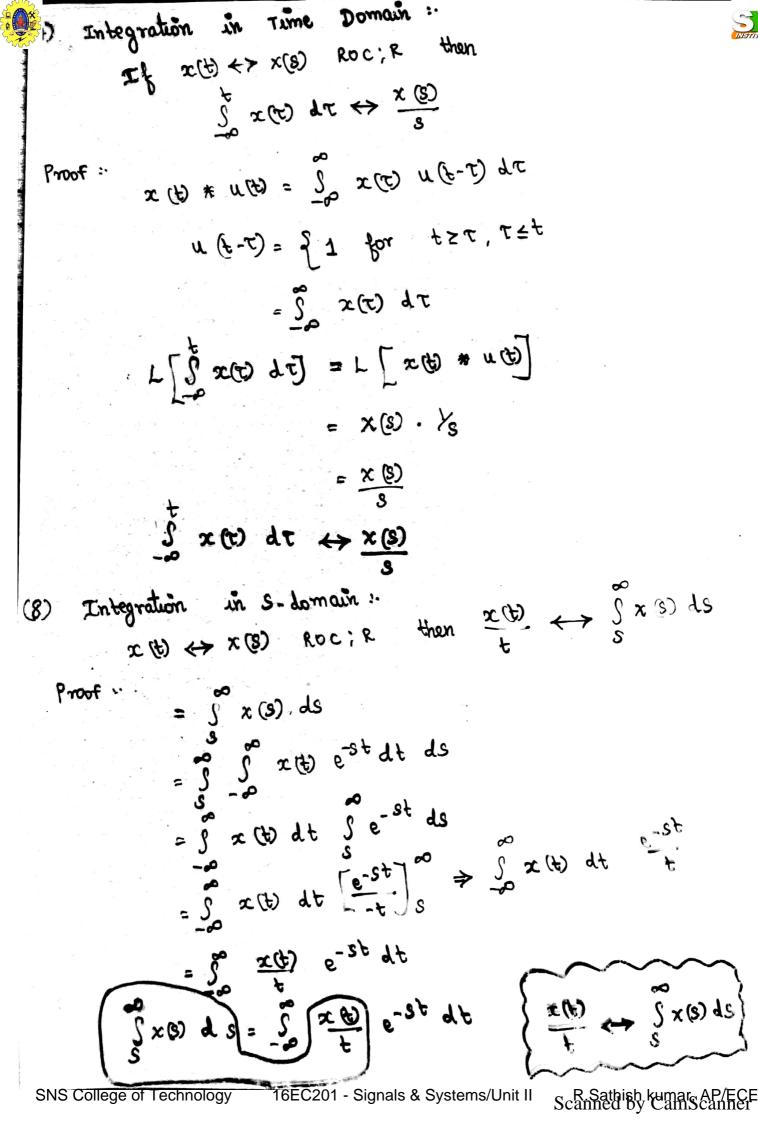
PROPERTIES OF LAPLACE TRANSFORM Let $x_1(t) \leftrightarrow x_1(s)$ Roc; R_1 at $x_2(t) \leftrightarrow x_2(s)$ Roc; R_2 Linewity $L[a_1 x_1(t) + a_2 x_2(t)] = a_1 x_1(s) + a_2 x_2(s)$ then $L[x(t)] = \int_{-st}^{\infty} x(t) e^{-st} dt$ Proof : = $\int_{0}^{\infty} \left[a_1 x_1(t) + a_2 x_2(t) \right] e^{-st} dt$ = $a_1 \int_{\infty}^{\infty} x_1(t) e^{-st} dt + a_2 \int_{\infty}^{\infty} x_2(t) e^{-st} dt$ $L[x(b)] = a_1 x_1(b) + a_2 x_2(b)$ 2) Time shifting property: [Translation in Time Domain] Let $x(t) \leftrightarrow x(s)$ Roc; R then $L\left[x(t-to)\right] = e^{-sto} x(s)$ L[x(t)] = S x(t) e^{-st} dt $= \int_{0}^{\infty} x (t-t_{0}) e^{-St} dt$ t=to=m, t=m+to, dt=dm $= \int_{-\infty}^{\infty} x(m) e^{-s(m+2\sigma)} dm$ = $\int_{-\infty}^{\infty} x(m) e^{-sm} e^{-sto} dm$ $z e^{-sto} = \int \frac{1}{2} x(m) e^{-sm} dm$ x(s)= 2-3to x (3)

5) Translation in frequency domain :	MISTITUTIONS
Let $x(t) \leftrightarrow x(s)$ Roc; R then	
$L\left[e^{s_0t} \times (t)\right] = \times (s_{-s_0})$, A
Proof : L[x(t)]. S x(t) e-st dt	
$\int_{-\infty}^{\infty} e^{sot} x(t) e^{-st} dt$	÷
$= \int_{0}^{\infty} x(t) e^{-t} (S^{-s_0}) dt$	
× (8 - 8 0)	
= × (3-30)	
(4) Time scaling:	
Let $x(t) \leftrightarrow x(s)$ Roe; R then $x(at) \leftrightarrow \frac{1}{ a } x(s_a)$)
Proof : $L[x(t)] = \int_{0}^{\infty} x(t) e^{-st} dt$	
$\sum_{i=1}^{\infty} \mathcal{X}(ab) e^{-bb} db$	
$case(i) a > 0;$ $at = m_{a}, t = m_{a}, dt = dm_{a}$	
$= \int_{-\infty}^{\infty} \infty (m) e^{-s(m/\alpha)} dm$	
$=\frac{1}{2}$ S $x(m) e^{-(S_{a})m} dm$	
$\gamma_{\alpha} \times (\gamma_{\alpha}) \longrightarrow \mathbb{O}$	
cale (11) aco;	
$L[xat] = \frac{1}{-a} \times (\frac{3}{a}) \rightarrow (3)$	
By combining () + (2)	52
$= \frac{1}{(a)} \times (\frac{3}{a})$	
SNS College of Technology 16EC201 - Signals & Systems/Unit II Scanned by CamScanned	CE ier

Differentiation in Time Domain :. Let x(t) (x (s) Roc; R then dy x(t) + sx(3) Threase $LT := \mathcal{I}(b) = \frac{1}{2\pi j} = \frac{1}{\sigma - j\rho}$ Proof : $d'_{at} x(t) = \frac{1}{2\pi j} \int_{\sigma_j \sigma} x(s) d'_{at} e^{st} ds$ = 1 g x (s) (s) est de $\frac{d}{dt} = \frac{d}{2\pi j} \int_{0+j\infty}^{0+j\infty} S x(s) e^{st} ds$ dy x (1) ↔ s x (1) (6) pifferentiation in S= domain : Let x (t) <> x (3) Roc; R then -= x () (S) **Proof** : $x(s) = \int x(t) e^{-St} dt$ $\frac{d}{ds} \mathbf{x}(s) = \int \mathbf{x}(t) \frac{d}{ds} \left(e^{-st}\right) dt$ $= \int_{-\infty}^{\infty} x(t) (-t) (-t) e^{-st} dt$ $\frac{d}{ds} \times (s) = \frac{s}{s} - t \times (t) e^{-st} dt$ SNS College of Technology 16EC201 - Signals & Systems/Unit II Scanned by CamScanner

SB



9) convolution property:

$$x_1(t) \leftrightarrow x_1(t)$$
 Roc: R_1 and $x_2(t) \leftrightarrow x_2(t)$ Roc: x_2
then
 $x_1(t) \ast x_2(t) \leftrightarrow x_1(t) \times x_2(t)$
 $r_1(t) \ast x_2(t) \leftrightarrow x_2(t)$ $e^{-st} dt$
 $= \int_{-\infty}^{\infty} [x_1(t) \ast x_2(t)] e^{-st} dt$
 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1(t) x_2(t-t) dt$
 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1(t) x_2(t-t) dt$ $e^{-st} dt$
 $= \int_{-\infty}^{\infty} x_1(t) dt \int_{-\infty}^{\infty} x_2(t-t) e^{-st} dt$
By time shifting property:
 $L[x(t-t)] = e^{-st} x(s) \rightarrow L[x_2(t-t)] = e^{-st} x_2(s)$
 $= \int_{-\infty}^{\infty} x_1(t) e^{-st} dt \cdot x_2(s)$
 $= \int_{-\infty}^{\infty} x_1(t) e^{-st} dt \cdot x_2(s)$