

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

23ECB221 – DIGITAL ELECTRONICS

II YEAR/ III SEMESTER

UNIT 3 – SEQUENTIAL CIRCUITS

TOPIC - Design of Synchronous Sequential circuits : Up/Down counter

Design of Synchronous Sequential Circuits :Up/Down counter/ DIGITAL ELECTRONICS/P.UMAMAHESWARI

9/20/2024

What is a Counter?

 \triangleright A digital circuit which is used for a counting pulses is known as counter. > Counter is the widest application of flip-flops.

 \succ It is a group of flip-flops with a clock signal applied.

Types of counters

Two Types

- Asynchronous Counter or Ripple Counter.
- 2. Synchronous Counter

Clk

Synchronous Counter

➢ In synchronous counter, the clock input across all the flip-flops use the same source and create the same clock signal at the same time.

➤ A counter which is using the same clock signal from the same source at the same time is called Synchronous counter.

Asynchronous Counter

- Depending upon the manner in which the flip-flop are triggered, counters can be divided into two major categories.
 - Asynchronous counter (RIPple/series counter). ii) synchronous counter (parallel counter).

The comparison between synchronows and Asynchronous counter.

Synchronous

> use system clock to trigger all f-f.

- Asynchronous
- -routput of one used as a clock in the next P.F.

Design of Synchronous Sequential Circuits : Up/Down counter/ DIGITAL ELECTRONICS/P.UMAMAHESWARI /AP/ECE/SNSCT

Synchronous Counter	Asynch		
All flip flops are triggered	Differer		
with same clock.	differen		
It is faster.	It is low		
Design is complex.	I Desig		
Decoding errors not present.	Decodir		
Any required sequence can	Only fix		
be designed	designe		

hronous Counter

- nt clock is applied to nt flip flops.
- wer
- In is relatively easy.
- ng errors present.
- xed sequence can be ed.

Up/Down Counters

A 3-bit binary up/down counter (State diagram)

26

State Table

Design of Synchronous Sequential Circuits : Up/Down counter/ DIGITAL ELECTRONICS/P.UMAMAHESWARI /AP/ECE/SNSCT

Excitation table

Input UP/DOWN (UD)	Present State		Next State			Flip-flop Inputs			
	Q _C	QB	Q _A	Q _{C + 1}	Q _{B + 1}	Q _A + 1	тс	TB	TA
0	0	0	0	1	1	1	1	1	1
o	0	0	1	0	0	o	0	0	1
0	0	1	0	0	0	1	0	1	, 1
0	o	1	1	0	1	0	0	0	1
0	1	0	0	0	1	1	1	1	1
0	1	0	1	1	0	0	o	0	1
0	1	1	0	1	o	1	0	1	1
0	1	1	1	1	1	0	0	o	1
1	0	0	0	0	0	1	0	o	1
1	0	0	1	0	1	0	0	1	1
1	0	1	0	0	1	1	o	o	1
1	0	1	1	1	0	0	1	1	1
1	1	0	0	1	0	1	0	0	1
1	1	0	1	1	1	0	0	1	1
1	1	1	0	1	1	1	0	0	1
1	1	1	1	0	0	0	1	1	1

Design of Synchronous Sequential Circuits : Up/Down counter/ DIGITAL ELECTRONICS/P.UMAMAHESWARI /AP/ECE/SNSCT

K-map simplification

Logic Diagram

Applications of Counters

Frequency counters

Digital clocks

Design of Synchronous Sequential Circuits : Up/Down counter/ DIGITAL ELECTRONICS/P.UMAMAHESWARI /AP/ECE/SNSCT

Digital triangular wave generator

Application for counter

- Frequency counters
- Digital clock
- Time measurement
- A to D converter
- Frequency divider circuits

13

ASSESSMENTS

1. How many natural states will there be in a 4-bit ripple counter?

- a) 4
- b) 8
- c) **16**
- d) 32
- 2. A ripple counter's speed is limited by the propagation delay of
 - a) Each flip-flop
 - b) All flip-flops and gates
 - c) The flip-flops only with gates
 - d) Only circuit gates.
- 3. Internal propagation delay of asynchronous counter is removed by
 - a) Ripple counter
 - b) Ring counter
 - c) Modulus counter
 - d) Synchronous counter

ASSESSMENTS

- 4. An asynchronous 4-bit binary down counter changes from count 2 to count 3. How many transitional states are required? a) 1
- b) 2
- c) 8
- d) 15

5. A ripple counter's speed is limited by the propagation delay of

a) Each flip-flop

b) All flip-flops and gates

- c) The flip-flops only with gates
- d) Only circuit gates

THANK YOU

Design of Synchronous Sequential Circuits : Up/Down counter/ DIGITAL ELECTRONICS/P.UMAMAHESWARI /AP/ECE/SNSCT

