

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

23ECB221-DIGITAL ELECTRONICS II YEAR/ III SEMESTER

UNIT 3 – SEQUENTIAL CIRCUITS

TOPIC – Modulo n Counters

Modulus Counter (MOD-N Counter)

The 2-bit counter is called as MOD-4 counter and 3-bit counter is called as MOD-8 counter. So in general, an n-bit counter is called as modulo-N counter. Where, MOD number = 2n.

- 2-bit up or down (MOD-4) \bullet
- 3-bit up or down (MOD-8) lacksquare
- 4-bit up or down (MOD-16) \bullet

Step 1 : Find number of flip-flops required to build the counter.

Flip-flops required are $: 2^n \ge N$.

Here N = 6 \therefore n = 3

i.e. Three flip-flops are required.

Step 2 : Write an excitation table for JK flip-flop.

Qn	Q1	J	к	
0	0	0	x	
0	1	1	х	
1	0	x	1	
1	1	х	0	

Stor. 2 n

Present state				Next state		Flip-flop inputs					
QA		1		Γ	T	<u> </u> .	KA	JB	Кв	Jc	Kc
QA	QB	Qc	Q _{A+1}	Q _{B+1}	QC + 1	JA			×	1	x
0	0	0	0	0	1	0	×	0	Ļ^	+	
0	0	1	0	1	0	0	×	1	×	×	<u> '</u>
0	1	0	0	1	1	0	×	×	0	1	x
							Ļ		1	×	1
0	1	1	1	0	0	1	x	×	1		
1	о	0	1	0	1	x	o	0	×	1	X
1	0	1	0	0	0	x	1	0	x	x	1
1	1	0	x	x	x	x	x	x	x	x	x
1	1	1	×	x	x	x	x	x	x	x	x

Step 4 : K-map simplification for flip-flop inputs.

Step 5 : Implement the counter.

6/12

·--r

Design Synchronous MOD-6 Counter Using D flip flop

Step 1 : Find number of flip-flops required to build the counter. Flip-flops required are : $2^n \ge N$ Here N = 6 \therefore n = 3

i.e. Three flip-flops are required.

Modulo N Counter/ 19ECB231/ DIGITAL ELECTRONICS/P.UmaMaheswari /AP/ECE/SNSCT

Step 2 : Determine the transition table.

Present state			Next state			
QA	QB	Qc	QA + 1	Q _B +1	Qc + 1	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	1	0	1	
1	0	1	0	0	0	
1	1	0	x	x	x	
1	1	1	x	x	×	

Step 3 : K-map simplification for flip-flop inputs.

$P_{B} = \overline{Q}_{A} \overline{Q}_{B} Q_{C} + Q_{B} \overline{Q}_{C}$ $D_{B} = \overline{Q}_{A} \overline{Q}_{B} Q_{C} + Q_{B} \overline{Q}_{C}$

Counters

10/12

ASSESSMENTS

1.What is MOD N Counter? 2.Design MOD 5 counter using T flip flop. 3.Difference between synchronous and Asynchronous counter .

THANK YOU

Modulo N Counter/ 19ECB231/ DIGITAL ELECTRONICS/P.UmaMaheswari /AP/ECE/SNSCT

9/20/2024

