

SNS COLLEGE OF TECHNOLOGY Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

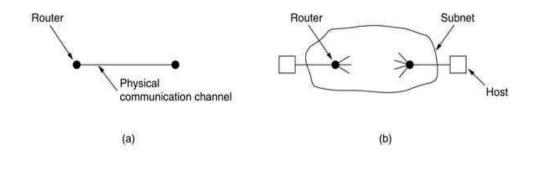
DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECT301- COMMUNICATION NETWORKS

III YEAR/ V SEMESTER

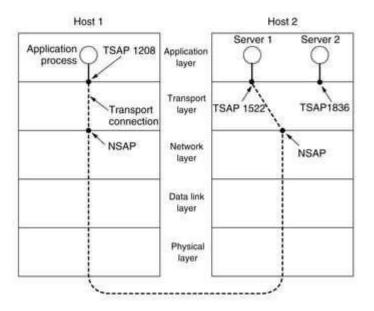
UNIT 3 - TRANSPORT LAYER & APPLICATION LAYER

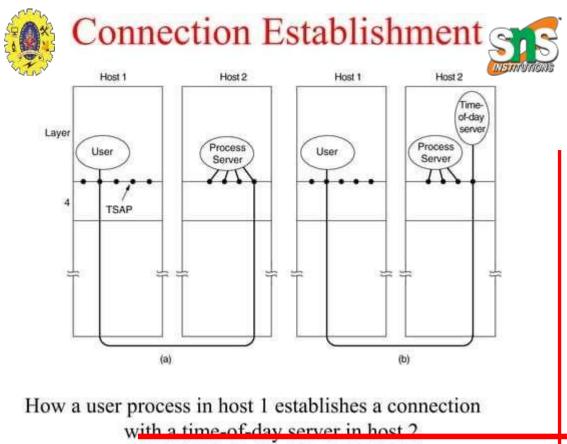
TOPIC – ELEMENTS OF TRANSPORT PROTOCOL


- Addressing
- Connection Establishment
- Connection Release
- Flow Control and Buffering
- Multiplexing
- Crash Recovery

3

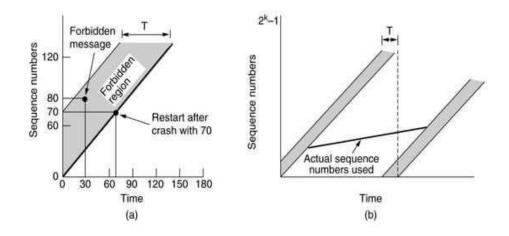
Transport Protocol


(a) Environment of the data link layer.(b) Environment of the transport layer.



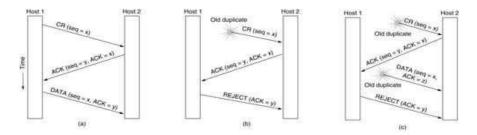
4

TSAPs, NSAPs and transport connections.


11/9/2024 ELEMENTS OF TRANSPORT PROTOCOL/19ECT301 COMMUNICATION NETWORKS /K.SURIYA/ECE/SNSCT

5

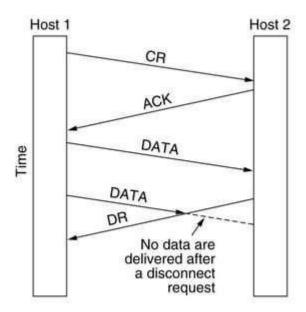
Connection Establishment (2)



(a) TPDUs may not enter the forbidden region.(b) The resynchronization problem.

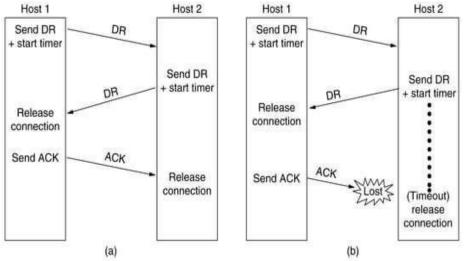
Connection Establishment (3)

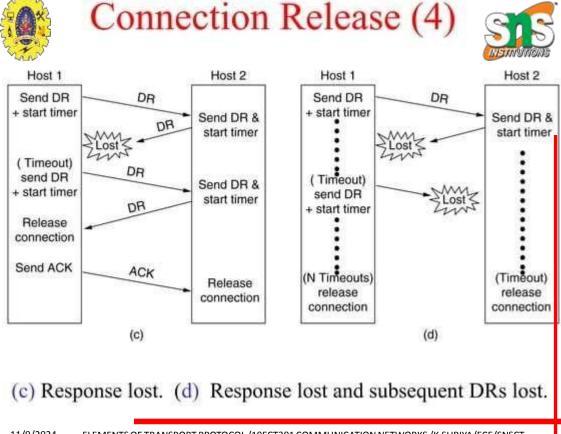
Three protocol scenarios for establishing a connection using a three-way handshake. CR denotes CONNECTION REQUEST. (a) Normal operation,

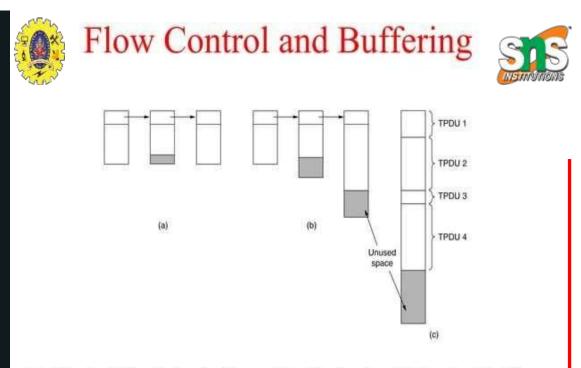

- (b) Old CONNECTION REQUEST appearing out of nowhere.
- (c) Duplicate CONNECTION REQUEST and duplicate ACK.

Connection Release

8

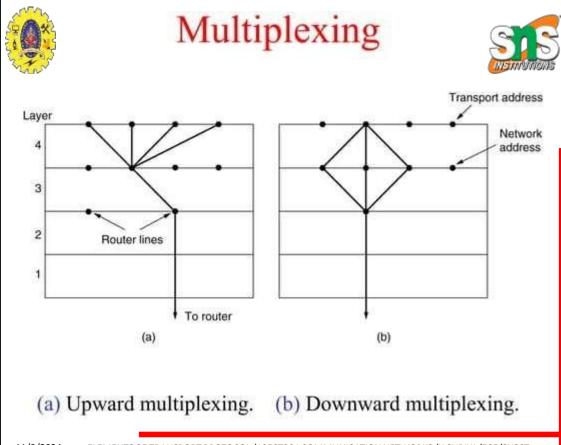

Abrupt disconnection with loss of data.


Connection Release (3)


q

Four protocol scenarios for releasing a connection. (a) Normal case of a three-way handshake. (b) final ACK lost.

11/9/2024 ELEMENTS OF TRANSPORT PROTOCOL / 19ECT301 COMMUNICATION NETWORKS /K.SURIYA/ECE/SNSCT 10


(a) Chained fixed-size buffers. (b) Chained variable-sized buffers.(c) One large circular buffer per connection.

Flow Control and Buffering (2)

	A	Message	в	Comments
	-		+	
1	-	< request 8 buffers>	-	A wants 8 buffers
2	+	<ack 15,="" =="" buf="4"></ack>	2	B grants messages 0-3 only
3		<seq 0,="" =="" data="m0"></seq>		A has 3 buffers left now
4	-	<seq 1,="" =="" data="m1"></seq>		A has 2 buffers left now
5	\rightarrow	<seq 2,="" =="" data="m2"></seq>		Message lost but A thinks it has 1 left
6		<ack 1,="" =="" buf="3"></ack>	-	B acknowledges 0 and 1, permits 2-4
7	-	<seq 3,="" =="" data="m3"></seq>		A has 1 buffer left
8		<seq 4,="" =="" data="m4"></seq>		A has 0 buffers left, and must stop
9	-	<seq 2,="" =="" data="m2"></seq>		A times out and retransmits
10	-	<ack 4,="" =="" buf="0"></ack>	-	Everything acknowledged, but A still blocked
11	*	<ack 4,="" =="" but="1"></ack>	-	A may now send 5
12	-	<ack 4,="" =="" buf="2"></ack>	-	B found a new buffer somewhere
13	\rightarrow	<seq 5,="" =="" data="m5"></seq>		A has 1 buffer left
14	-	<seq 6,="" =="" data="m6"></seq>		A is now blocked again
15	-	<ack 6,="" =="" buf="0"></ack>	•	A is still blocked
16		<ack 6,="" =="" buf="4"></ack>	•	Potential deadlock

Dynamic buffer allocation. The arrows show the direction of transmission. An ellipsis (...) indicates a lost TPDU.

Crash Recovery

Strategy used by receiving host

	First	First write, then ACK				
Strategy used by sending host	AC(W)	AWC	C(AW)	C(WA)	W AC	WC(A)
Always retransmit	ок	DUP	ок	ок	DUP	DUP
Never retransmit	LOST	ок	LOST	LOST	ОК	ОК
Retransmit in S0	ок	DUP	LOST	LOST	DUP	ок
Retransmit in S1	LOST	ОК	ОК	OK	ОК	DUP

OK = Protocol functions correctly

DUP = Protocol generates a duplicate message

LOST = Protocol loses a message

Different combinations of client and server strategy.

11/9/2024 ELEMENTS OF TRANSPORT PROTOCOL/19ECT301 COMMUNICATION NETWORKS /K.SURIYA/ECE/SNSCT 14

THANK YOU

11/9/2024 ELEMENTS OF TRANSPORT PROTOCOL/19ECT301 COMMUNICATION NETWORKS /K.SURIYA/ECE/SNSCT 15