
Introduction to ARM
Processors



2

OUTLINE

-Background
-ARM Microprocessor

•ARM Architecture,
•Assembly Language Programming
•Instruction Set



3

BACKGROUND

• Architectural features of embedded processor
• General rules (with exceptions):

1. Designed for efficiency (vs. ease of programming)
2. Huge variety of processors (resulting from 1.)
3. Harvard architecture
4. Heterogeneous register sets
5. Limited instruction-level parallelism or VLIW ISA
6. Different operation modes (saturating arithmetic, fixed point)
7. Specialised microcontroller & DSP instructions (bit-field

addressing, multiply/accumulate, bit-reversal, modulo addressing)
8. Multiple memory banks

• 9. No “fat”(MMU, caches, memory protection, target buffers,
complex pipeline logic, ...)

• These features have to be known to the compiler!



4

ARM Concept

•What is ARM?
–Advanced RISC Machine
–Acorn and VLSI Technology built in 1990/11
–RISC
– IP Core
–T.I. ，PHILIPS，INTEL……
–RISC Microcontroller

•ARM7、ARM9、ARM9E-S、StrongARM
ARM10…..

ARM的產品是 IP Core, 業務是銷
售晶片系統的核心技術IP，全球有
許多大型IT公司採用ARM的技術，

如TI, Intel。

ARM的專利收入主要來
自專利授權金以及按比例
收取產品的專利使用費



5

ARM Concept

•Why ARM?
–Low power、Low cost、Tiny
–8/16/32 bit microprocessor
–Thumb mode
–Namely

•T：Thumb Mode
•D：Debug interface (JTAG)
•M：Multiplier
•I：ICE interface (Trace、Break point)



6

Why ARM here?

•ARM is one of the most licensed and thus
widespread processor cores in the world

•Used especially in portable devices due to low
power consumption and reasonable
performance (MIPS / watt)

•Several interesting extensions available or in
development like Thumb instruction set and
Jazelle Java machine
–http://www.arm.com/armtech/jazelle?OpenDocument



7

ARM processor

•ARM is a family of RISC architectures.
•“ARM”is the abbreviation of “Advanced RISC

Machines”.
•ARM does not manufacture its own VLSI devices.

–linceses
•ARM7- von Neuman Architecture
•ARM9 –Harvard Architecture



8

ARM vs. SoC

•Architecture of ARM and SoC
ARM核心就是個CPU，
SoC則是把系統要的功
能全放到CPU內，可以
提供特定用途的單晶片
IC。以個人電腦為例，
將一部電腦除了電源
外，皆轉變到一顆IC

中。

Ex:
LAN controller，
LCD controller



9



10

Intel Xscale



11

ARM single-cycle instruction 3-
stage pipeline operation

fetch decode execute

time

1

fetch decode execute

fetch decode execute

2

3
instruction



12

ARM busses

•AMBA:
–Open standard.
–Many external

devices.
•Two varieties:

–AMBA High-
Performance Bus
(AHB).

–AMBA Peripherals
Bus (APB).

CPU

br
id

ge

memory I/O

AHB APB



13

ARM instruction set

•ARM processor (operating) states
•ARM memory organization.
•ARM programming model.
•ARM assembly language.
•ARM data operations.
•ARM flow of control.
•C to assembly examples
•Exceptions
•Coprocessor instructions
•Summary



14

Processor Operating States

•The ARM7TDMI processor has two
operating states:
–ARM - 32-bit, word-aligned ARM instructions

are executed in this state.
–Thumb -16-bit, halfword-aligned Thumb

instructions are executed in this state.



15

•The operating state of the ARM7TDMI
core can be switched between ARM state
and Thumb state using the BX (branch
and exchange) instructions



16

The Memory System

•4 G address space
–8-bit bytes, 16-bit half-words, 32-bit words
–Support both little-endian and big-endian

half-word4

word16

0123

4567

891011

byte0
byte

12131415

16171819

20212223

byte1byte2

half-word14

byte3

byte6

address

bit 31 bit 0

half-word12

word8



17

Operating Modes
• The ARM7TDMI processor has seven modes of operations:

–User mode(usr)
- Normal program execution mode

–Fast Interrupt mode(fiq)
- Supports a high-speed data transfer or channel process.

– Interrupt mode(irq)
- Used for general-purpose interrupt handling.

–Supervisor mode(svc)
- Protected mode for the operating system.

–Abort mode(abt)
- implements virtual memory and/or memory protection

–System mode(sys)
- A privileged user mode for the operating system. (runs OS
tasks)

–Undefined mode(und)
- supports a software emulation of hardware coprocessors

• Except user mode, all are known as privileged mode.



18

ARM programming model

r0
r1
r2
r3
r4
r5
r6
r7

r8
r9
r10
r11
r12
r13
r14

r15 (PC)

CPSR

31 0

N Z C V

CPSR: Current Program Status Register
SPSR: Saved Program Status Register



19

Registers
•37 registers

– 31 general 32 bit registers, including PC
– 6 status registers
– 15 general registers (R0 to R14), and one status registers and program

counter are visible at any time –when you write user-level programs
•R13 (SP)
•R14 (LR)
•R15 (PC)

•The visible registers depend on the processor mode
•The other registers (the banked registers) are switched

in to support IRQ, FIQ, Supervisor, Abort and Undefined
mode processing



20

ARM Registers (1)

r13_und
r14_undr14_irq

r13_irq

SPSR_und

r14_abtr14_svc

user mode
fiq

mode
svc

mode
abort
mode

irq
mode

undefined
mode

usable in user mode

system modes only

r13_abtr13_svc

r8_fiq
r9_fiq

r10_fiq
r11_fiq

SPSR_irqSPSR_abtSPSR_svcSPSR_fiqCPSR

r14_fiq
r13_fiq
r12_fiq

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13
r14
r15 (PC)



21

Registers
•R0 to R15 are directly accessible
•R0 to R14 are general purpose
•R13: Stack point (sp) (in common)

–Individual stack for each processor mode
•R14: Linked register (lr)
•R15 holds the Program Counter (PC)
•CPSR - Current Program Status Register contains

condition code flags and the current mode bits
•5 SPSRs (Saved Program Status Registers) which

are loaded with CPSR when an exceptions occurs



22

The Program Counter (R15)
• When the processor is executing in ARM state:

–All instructions are 32 bits in length
–All instructions must be word aligned
–Therefore the PC value is stored in bits [31:2] with bits [1:0]

equal to zero (as instruction cannot be halfword or byte aligned).
• R14 is used as the subroutine link register (LR) and stores the return

address when Branch with Link (BL) operations are performed,
calculated from the PC.

• Thus to return from a linked branch
MOV r15,r14
MOV pc,lr



23

Program Status Registers

•The ARM contains a Current Program Status Register
(CPSR), plus five Saved Program Status Registers
(SPSRs) for use by exception handlers.

•These register’s functions are:
–Hold information about the most recently performed

ALU operation.
–Control the enabling and disabling of interrupts.
–Set the processor operating mode



24

Program Status Registers
–The N, Z, C and V are condition code flags

•may be changed as a result of arithmetic and logical
operations in the processor

•may be tested by all instructions to determine if the
instruction is to be executed

•N : Negative. Z : Zero. C : Carry. V : oVerflow
–The I and F bits are the interrupt disable bits
–The T bit is thumb bit
–The M0, M1, M2, M3 and M4 bits are the mode bits



25

Program Counter (r15)

•When the processor is executing in ARM state:

–All instructions are 32 bits wide

–All instructions must be word aligned

–The PC value is stored in bits [31:2] with bits
[1:0] undefined

–Instructions cannot be halfword or byte
aligned



26

ARM Memory Organization

half-word4

word16

0123

4567

891011

byte0
byte

12131415

16171819

20212223

byte1byte2

half-word14

byte3

byte6

address

bit 31 bit 0

half-word12

word8



27

Big Endian and Little Endian
Big endian

Little endian



28

Exceptions

•Exceptions are
usually used to
handle unexpected
events which arise
during the execution
of a program 執行系統任務之

計算與處理工作

系統任務 (Task)

初始化處理 處理事件(Event)
或設定旗號(Flag)

中斷服務程式 (ISR)

自中斷服務程式返回

中斷信號處理
與啟動中斷服
務程式

系 統 運 作 中 斷 處 理

回復(繼續)
執行任務

From 黃悅民等嵌入式系統設計-以ARM 處理器為基礎之
SoC平台



29

Exception

•System Exception
–CPU在執行時，愈到特殊的狀況而產生的例
外，使用者完全無法對例外進行初始化、停
止、或啟動

•Interrupt Exception
–ARM CPU預留給系統建置者使用的中斷入口



30

Exception Groups
•Direct effect of executing an instruction

–SWI
–Undefined instructions
–Prefetch aborts (memory fault occurring during fetch)

•A side-effect of an instruction
–Data abort (a memory fault during a load or store data

access)
•Exceptions generated externally

–Reset
–IRQ
–FIQ



31

Exception Entry
•Change to the corresponding mode

•Save the address of the instruction following the
exception instruction in r14 of the new mode

•Save the old value of CPSR in the SPSR of the
new mode

•Disable IRQ

•If the exception is a FIQ, disables further FIQ

•Force PC to execute at the relevant vector
address



32

Exception Vector Addresses

Excepti o n Mo de Vector addres s
Reset SVC 0x00000000
Undefined instruction UND 0x00000004
Software interrupt (SWI) SVC 0x00000008
Prefetch abort (instruction fetch memory fault) Abort 0x0000000C
Data abort (data access memory fault) Abort 0x00000010
IRQ(normal interrupt) IRQ 0x00000018
FIQ(fast interrupt) FIQ 0x0000001C

Intel x86 –0x00000 ~ 0x003FF (4 x 256)
ARM –0x000000 ~ 0x00001F



33

Exception Return

•Any modified user registers must be restored

•Restore CPSR

•Resume PC in the correct instruction stream



34

Exception Priorities

•Reset
•Data abort
•FIQ
•IRQ
•Prefetch abort
•SWI, undefined instruction

Highest priority



35

Naming Rule of ARM
•ARM {x} {y} {z} {T} {D} {M} {I} {E} {J} {F} {-S}

–x: series
–y: memory management / protection unit
–z: cache
–T: Thumb decoder
–D: JTAG debugger
–M: fast multiplier
–I: support hardware debug
–E: enhance instructions (based on TDMI)
–J: Jazelle
–F: vector floating point unit
–S: synthesiable, suitable for EDA tools



Development of the ARM Architecture

SA-110

ARM7TDMI

4T

1
Halfword
and signed
halfword /
byte support

System
mode

Thumb
instruction
set

2

4

ARM9TDMI

SA-1110

ARM720T ARM940T

Improved
ARM/Thumb
Interworking

CLZ

5TE

Saturated maths

DSP multiply-
accumulate
instructions

XScale

ARM1020E

ARM9E-S

ARM966E-S

3

Early ARM
architectures

ARM9EJ-S

5TEJ

ARM7EJ-S

ARM926EJ-S

Jazelle

Java bytecode
execution

6

ARM1136EJ-S

ARM1026EJ-S

SIMD Instructions

Multi-processing

V6 Memory
architecture (VMSA)

Unaligned data
support

reference: http://www.intel.com/education/highered/modelcurriculum.htm



37

ARM assembly language

•Fairly standard assembly language:

LDR r0,[r8] ; a comment
label ADD r4,r0,r1



38

ARM data types

•32-bit word.
•Word can be divided into four 8-bit

bytes.
•ARM addresses can be 32 bits long.
•Address refers to byte.

–Address 4 starts at byte 4.

•Can be configured at power-up as
either little- or bit-endian mode.



39

Instruction Set

•The ARM processor is very easy to program at
the assembly level

•In this part, we will

–Look at ARM instruction set and assembly
language programming at the user level



40

Notable Features of ARM Instruction Set

•The load-store architecture

•3-address data processing instructions

•Conditional execution of every instruction

•The inclusion of every powerful load and store multiple
register instructions

•Single-cycle execution of all instruction

•Open coprocessor instruction set extension



41

Conditional Execution (1)

•One of the ARM's most interesting features is that each
instruction is conditionally executed

• In order to indicate the ARM's conditional mode to the
assembler, all you have to do is to append the
appropriate condition to a mnemonic

CMP r0, #5
BEQ BYPASS
ADD r1, r1, r0
SUB r1, r1, r2

BYPASS
…

CMP r0, #5
ADDNE r1, r1, r0
SUBNE r1, r1, r2

…



42

Conditional Execution (2)

•The conditional execution code is faster and
smaller
; if ((a==b) && (c==d)) e++;
;
; a is in register r0
; b is in register r1
; c is in register r2
; d is in register r3
; e is in register r4

CMP r0, r1
CMPEQ r2, r3
ADDEQ r4, r4, #1



43

The ARM Condition Code Field

cond

31 28 27 0

•Every instruction is conditionally executed

•Each of the 16 values of the condition field
causes the instruction to be executed or skipped
according to the values of the N, Z, C and V
flags in the CPSR

N: Negative Z: Zero C: Carry V: oVerflow



44

ARM Condition Codes
Opco de
[3 1 :2 8 ]

Mnemo ni c
ex tens i o n

Interpretat i o n Status f l ag s tate fo r
ex ecut i o n

0000 EQ Equal / equals zero Z set
0001 NE Not equal Z clear
0010 CS/HS Carry set / unsigned higher or same C set
0011 CC/LO Carry clear / unsigned lower C clear
0100 MI Minus / negative N set
0101 PL Plus / positive or zero N clear
0110 VS Overflow V set
0111 VC No overflow V clear
1000 HI Unsigned higher C set and Z clear
1001 LS Unsigned lower or same C clear or Z set
1010 GE Signed greater than or equal N equals V
1011 LT Signed less than N is not equal to V
1100 GT Signed greater than Z clear and N equals V
1101 LE Signed less than or equal Z set or N is not equal to V
1110 AL Always any
1111 NV Never (do not use!) none



45

Condition Field
• In ARM state, all instructions are conditionally executed

according to the CPSR condition codes and the
instruction’s condition field

•Fifteen different conditions may be used

•“Always”condition

–Default condition

–May be omitted

•“Never”condition

–The sixteen (1111) is reserved, and must not be used

–May use this area for other purposes in the future


