Introduction to ARM
Processors

OUTLINE

-Background

-ARM Microprocessor
« ARM Architecture,
« Assembly Language Programming
* |nstruction Set

BACKGROUND

Architectural features of embedded processor
General rules (with exceptions):

1.

NOoOORWDN

© o

Designed for efficiency (vs. ease of programming)

Huge variety of processors (resulting from 1.)

Harvard architecture

Heterogeneous register sets

Limited instruction-level parallelism or VLIW ISA

Different operation modes (saturating arithmetic, fixed point)
Specialised microcontroller & DSP instructions (bit-field
addressing, multiply/accumulate, bit-reversal, modulo addressing)
Multiple memory banks

. No “fat” (MMU, caches, memory protection, target buffers,

complex pipeline logic, ...)

These features have to be known to the compiler!

ARM Concept

ARMpJF}P Ei_IP Core, H 5kl

FE| | SR NG e P 4\:?]
rﬂ\ﬂIT“fIH" '|ARMF U 5
ITl, Intel -

 What is ARM?
— Advanced RISC Machine
— Acorn and VLSI Technology built in 1990/11
— RISC ARMIE A © = e
— IP Core E';ﬁg} [Ei}ﬁgﬁ?ﬂ
—T.I. » PHILIPS » INTEL......

— RISC Microcontroller
« ARM7 - ARM9 - ARM9E-S - StrongARM

ARM Concept

 Why ARM?
— Low power -~ Low cost ~ Tiny
— 8/16/32 bit microprocessor
— Thumb mode

— Namely
T : Thumb Mode
* D : Debug interface (JTAG)
« M : Multiplier
| : ICE interface (Trace ~ Break point)

Why ARM here?

e ARM is one of the most licensed and thus
widespread processor cores in the world

e Used especially in portable devices due to low
power consumption and reasonable
performance (MIPS / watt)

e Several interesting extensions available or in
development like Thumb instruction set and
Jazelle Java machine

— http://www.arm.com/armtech/jazelle?OpenDocument

ARM processor

ARM is a family of RISC architectures.

“"ARM" is the abbreviation of "Advanced RISC
Machines”.

ARM does not manufacture its own VLSI devices.
— linceses

ARM7- von Neuman Architecture
ARM9 — Harvard Architecture

ARM vs. SoC

 Architecture of ARM and SoC

: ARM#S CBERLHCPU +
| e e SOCH[R 5B
” fis = WEICPUL > '))
: ?ﬁﬁﬂj %“J%Ff‘@“@%ﬁﬁ
LT || IC - '}t ~ LR -
Controller~ f; }[;/ {gg] %{F
. i s% - HiIC
NN “' -
S
Other f’“
Controllers. > f:
EX: 0¢
LAN controller >)
CD controll

‘ ‘ Cache Size Tightly Memory | AHB Bus [Thumb | DSP | Jazelle Clock
{(Inst/Dhata) Coupled Manage Interface MHz =%
Memory -ment
RMTTDMI | No | No No Yes* | | No | No | 133
ARMTTDMIS | MNo | No | No D YYes® | Yes | No | No | 100-133
RMTEJ-S | MNo | No | No \/ Yes* | Yes | Yes | Yes | 100-133
ARMO66E-S | Na Lo Yes N MNo T Yes | Yes | Yes | No | 230250
ARMI40T | AR AR | No I mMPU [ves* | Yes | No | No | 180
ARMY4GE-S | Variable | Yes | MPU | Yes | Yes | Yes | MNo | 180-210
ARMI026F)-S | Variable | Yes |MMU+MPU | dual AHB | Yes | Yes | Yes | 266-325
Platform Cores
ARMT20T | BK unified | No COMMU | Yes | Yes | No | No | 100
ARMO20T | 16K 16K | No | MMU | Yes® | Yes | No | MNo | 250
ARM922T | RS K | No | MMU | Yes* | Yes | No | No | 250
ARMO2GEI-S | Variable | Yes | MMU | dual AHB | Yes | Yes | Yes | 220-250
ARMIOZOE | S2K/EZK | No O MMU [dual AHE | Yes | Yes | No | 325
A | 16K 16K | No . MMU [dual AHB | Yes | Yes | No | 325
| Variahle | Yes MMU+MPU | dual AHB | Yes | Yes | Yes | 266-325
Secure Applications
| N | No . MPU | No | Yes | MNo | No | 80
| No | No . MPL | No | Yes | No | No | 80
| Optional | No | MPU | No | Yes | Yes | Yes | 110
| Optional | No | MPU | No | Yes | Yes | Yes | 110
_-__ _
| 16K SK MM -E|-

<....H1.3=-33_ EpT R | No | MWL | NiA | Yes Yes@

9

Intel Xscale

ARMNMF Architecture Version STE ISA compliant.
— ARMNM® Thumb Instruction Support

— ARM=*= DSP Enhanced Instructions

[Low power consumption and high performance
Intel™ Media Processing Technology

—— Enhanced 16-bit Multiply

— 4i-bi1it Accumulator

32-KBvte Instruction Cache

3Z2-KBvte Data Cache

Z-KBwvte Mini Data Cache

Z-KBvte Mini Instruction Cache

Instruction and Data Memory Management Units
Branch Target Bufter

Debug Capabihity via JTAG Port

10

ARM single-cycle instruction 3-
stage pipeline operation

1 fetch | decode| execute I

2 fetch | decode

execute‘

3 =

Jecode

executel

11

ARM busses

e AMBA:
— Open standard.
— Many external
devices.
e Two varieties:

— AMBA High-
Performance Bus
(AHB).

— AMBA Peripherals
Bus (APB).

CPU

memory

AHB

bridge

1/0

APB

12

ARM Instruction set

ARM processor (operating) states
ARM memory organization.

ARM programming model.

ARM assembly language.

ARM data operations.

ARM flow of control.

C to assembly examples
Exceptions

Coprocessor instructions
Summary

13

Processor Operating States

e The ARM7TDMI processor has two
operating states:

— ARM - 32-bit, word-aligned ARM instructions
are executed in this state.

— Thumb -16-bit, halfword-aligned Thumb
Instructions are executed In this state.

14

e The operating state of the ARM7TDMI
core can be switched between ARM state
and Thumb state using the BX (branch
and exchange) instructions

BK‘{ = Cond = } =R =

where:

<conds= [s the condition under which the instruction 1s executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition 1s used.

<Rm> Holds the value of the branch target address. Bit[0] of Rm 1s 0 to select a target ARM

instruction, or | to select a target Thumb instruction.

15

The Memory System

e 4 G address space
— 8-bit bytes, 16-bit half-words, 32-bit words
— Supp*qrgitl:ggth ittle&teon_d*i:an and big-endian

23

22

21

20

19

18

17

wordl16

16

15

14
half-word14

13

12
half-word12

11

10

9

word8

8

-

6
byte6

5

4

half-word4

3 2 1 0
bytes _byte2 bytel byteQ

-

byte
address

16

Operating Modes

e The ARM7TDMI processor has seven modes of operations:

User mode(usr) _
- Normal program execution mode

Fast Interrupt mode(fiq)
- Supports a high-speed data transfer or channel process.

Interrupt mode(irq)
- Used for general-purpose interrupt handling.

Supervisor mode(svc)
- Protected mode for the operating system.

Abort mode(abt)
- implements virtual memory and/or memory protection

System mode(sys)
- A privileged user mode for the operating system. (runs OS
tasks)

Undefined mode(und) _
- supports a software emulation of hardware coprocessors

e EXxcept user mode, all are known as privileged mode.

17

ARM programming model

ro

rl

r8

r2

ro

r3

r10

31 0

r4

rll

S

rl2

CPSR

re

rl3

r/

rl4

r15 (PC)

CPSR: Current Program Status Register
SPSR: Saved Program Status Register

NZCV

18

Registers

37 registers
— 31 general 32 bit registers, including PC
— 6 status registers

— 15 general registers (RO to R14), and one status registers and program
counter are visible at any time — when you write user-level programs
« R13(SP)
« R14 (LR)
« R15 (PC)
The visible registers depend on the processor mode

The other registers (the banked registers) are switched

In to support IRQ, FIQ, Supervisor, Abort and Undefined
mode processing

19

ARM Registers (1)

H usable in user mode

|| system modes only

rlB_irqE rl3 und|]

r14_irq ' r14 und
]

r13 abtl
r14 abt]

I
SPSR irg &—‘SPSR_und 1

T

!

'SPSR vl SPSR_abt
I J

abort
mode

ro
rl
r2
r3
r4
rs
ré
r7 _
8 r8 fig
9 r9 fig
10 r10_fig
11 il fig
r2 :ig{:q r13 svc
ri3 — r14 svcl
14 rl4 fig =17
r15 (PC)

CPSR | SPSR fiq

SvC

user mode mode

irq undefined
mode mode

20

Registers

RO to R15 are directly accessible

RO to R14 are general purpose

R13: Stack point (sp) (in common)

— Individual stack for each processor mode
R14: Linked register (Ir)

R15 holds the Program Counter (PC)

CPSR - Current Program Status Register contains
condition code flags and the current mode bits

5 SPSRs (Saved Program Status Registers) which
are loaded with CPSR when an exceptions occurs

21

The Program Counter (R15)

 When the processor is executing in ARM state:
— All instructions are 32 bits in length
— All instructions must be word aligned

— Therefore the PC value is stored in bits [31:2] with bits [1:0]
equal to zero (as instruction cannot be halfword or byte aligned).

 R14 is used as the subroutine link register (LR) and stores the return
address when Branch with Link (BL) operations are performed,
calculated from the PC.

 Thus to return from a linked branch
MOV r15,r14
MOV pc, |r

22

Program Status Registers

e The ARM contains a Current Program Status Register
(CPSR), plus five Saved Program Status Registers
(SPSRs) for use by exception handlers.

e These register’s functions are:

— Hold information about the most recently performed
ALU operation.

— Control the enabling and disabling of interrupts.
— Set the processor operating mode

23

Program Status Registers

The N, Z, C and V are condition code flags

e may be changed as a result of arithmetic and logical
operations in the processor

e may be tested by all instructions to determine if the

Instruction is to be executed
e N : Negative. Z: Zero. C: Carry. V :oVerflow

The | and F bits are the interrupt disable bits
The T bit is thumb bit

The MO. M1. M2. M3 and M4 bits are the mode bits

Condition
code flags Fasarvad Cantral bits
| | |
| | | I I
31 30 29 28 27 286 25 24 23 H g 5 4 3 2 1 0
MlZlc|v]=|=]=]+]- /- F | T [mad|ma|nz|mmo
L — [
Ovarflow l— Mode bils
— Cany ar bormow or axtend State bt
2o FIOQ disable
Magaltve or less than IRQ di=able

24

Program Counter (r15)

* When the processor Is executing in ARM state:

—A
—A
-T

| instructions are 32 bits wide

| instructions must be word aligned

ne PC value Is stored In bits [31:2] with bits

[1:0] undefined

— Instructions cannot be halfword or byte
aligned

§ bit 31
23

22

21

bit O _* :
20|

19

18

WOrd16

16

14

nalf-word14

12

half word12

11

10
WO

9
ras

8

7

6
byte6

5

4

half-word4

byted byte? bytel byted

ARM Memory Organization

byte

address

26

Big Endian and Little Endian

Big endian
Higher Address 31 24 23 16 15 7 a Word Address
8 9 10 11 8
4 5 6 [4
0 1 Z 3 0
Lower Address * Most significant byte is at lowest address
« Word is addressed by byte address of most significant byte
Little endian
Higher Address 31 24 23 16 15 7 a Waord Address
11 10 9 B i
7 B 3 4 4
3 2 1 0 0
Lower Addrass » Least significant byte is at lowest addrass

= Word is addressed by byte address of |least significant byte

27

Exceptions

Exceptions are
usually used to
handle unexpected
events which arise
during the execution
of a program

¥ e T

¥ E7pRFx 42 3¢ (ISR) J

%

Jed2 % % (Event)
£ 3% T 3(Flag)

y

B¢ ETIRFRAR N K W

LT R SR iE g2 w4 (4)
ﬂﬁ@—l 3 3{{!{‘,‘7552“
—

From F 5T 5k * A2k wt-l)

SoC* VF,\'

F

ARM R L

28

Exception

« System Exception

- CPUZH TR » AR TS % o]
b U RS S ST AT IS TR T

. HYEEE
1=~ F it

* Interrupt Exception
A B 2 o v T

— ARM CPU7

29

Exception Groups

* Direct effect of executing an instruction

— SWI

— Undefined instructions

— Prefetch aborts (memory fault occurring during fetch)
« A side-effect of an instruction

— Data abort (a memory fault during a load or store data
access)

« Exceptions generated externally
— Reset
— IRQ
— FIQ

30

Exception Entry

Change to the corresponding mode

Save the address of the instruction following the
exception instruction in r14 of the new mode

Save the old value of CPSR in the SPSR of the
new mode

Disable IRQ
f the exception is a FIQ, disables further FIQ

Force PC to execute at the relevant vector
address

31

Exception Vector Addresses

Exception Mode | Vector address
Reset SVC 0x00000000
Undefi nedinstruction UND 0x00000004
Software interrupt (SW) SVC 0x00000008
Prefetch abort (instruction fetch memory faut) Abort 0x0000000C
Dataabort (dataaccess memory faut) Abort 0x00000010
IRQ (normd interrupt) IRQ 0x00000018
FIQ (fast interrupt) FQ 0x0000001C

+Intel x86 — 0x0O0000 ~ OXO03FF (4 x 256)
+ARM — 0x000000 ~ Ox00001F

32

Exception Return

* Any modified user registers must be restored
 Restore CPSR

« Resume PC In the correct instruction stream

33

Exception Priorities

Reset

Data abort

F1Q

IRQ

Prefetch abort

SWI, undefined instruction

Highest priority

34

Naming Rule of ARM
* ARM {x} {y} {z} {T} {D} {M} {1} {E} {3} {F} {-S}

— X: series

— y: memory management / protection unit
— Z: cache

— T: Thumb decoder

— D: JTAG debugger

— M: fast multiplier

— |: support hardware debug

— E: enhance instructions (based on TDMI)
— J: Jazelle

— F: vector floating point unit

— S: synthesiable, suitable for EDA tools

35

Development of the ARM Architecture

: Improved : I

! Halfword : ARM/Thumb ; Jazelle
: and signed : Interworking : Java bytecode

halfword / i execution
: byte support i CLZ :
: System SA-110 Saturated maths | ARMOEJ-S ARM926EJ-S
 System | saa0] | 5
- : DSP multiply-
SA-1110 accumulate E ARM7EJ-S ARM1026EJ-S
i Instructions e ee e
Thumb ARM1020E SIMD Instructions
: instruction i Multi-processing
: set XScale :

Early ARM : V6 Memory

architectures ; :
| Arm7tOMI || ARMOTOMI |i | ARMOE-S ; architecture (VMSA)

: Unaligned data

i1 ARM720T ARM940T |i | ARM966E-S : support ARM1136EJ-S

o
j

reference: http://www.intel.com/education/highered/modelcurriculum.htm

ARM assembly language

e Fairly standard assembly language:

LDR r0,[r8] ; a comment
| abel ADD r4,r0,r1l

37

ARM data types

32-bit word.

Word can be divided into four 8-bit
bytes.

ARM addresses can be 32 bits long.

Address refers to byte.
— Address 4 starts at byte 4.

Can be configured at power-up as
either little- or bit-endian mode.

38

Instruction Set

 The ARM processor is very easy to program at
the assembly level

* In this part, we will

— Look at ARM instruction set and assembly
language programming at the user level

39

Notable Features of ARM Instruction Set

The load-store architecture
3-address data processing instructions
Conditional execution of every instruction

The inclusion of every powerful load and store multiple
register instructions

Single-cycle execution of all instruction

Open coprocessor instruction set extension

40

Conditional Execution (1)

One of the ARM's most interesting features is that each

Instruction is conditionally executed

In order to indicate the ARM's conditional mode to the
assembler, all you have to do is to append the
appropriate condition to a mnemonic

C\VP
BEQ
ADD
SUB
BYPASS

ro, #5
BYPASS
ri, rl,
ri, rl,

ro
r2

CwvP
ADDNE
SUBNE

ro, #5

ri,
ri,

ri, rO
ri1, r2

41

Conditional Execution (2)

 The conditional execution code is faster and

maller
I f ((a==b) && (c==d)) e++;

aisinregister r0
Is in register rl
IS In register r2
Is in register r3
IS in register r4

® QO O T

C\VP ro, rl
CMPEQ r2, r3
ADDEQ r4, r4, #1

The ARM Condition Code Field

* Every Instruction is conditionally executed

« Each of the 16 values of the condition field
causes the instruction to be executed or skipped
according to the values of the N, Z, Cand V
flags in the CPSR

31 28 27 0

cond |

N: Negative Z: Zero C: Carry V: oVerflow

43

ARM Condition Codes

Opcode Mnemonic Interpretation Status flag state for
[31:28] extension execution
0000 EQ Equal / equal s zero Z set
0001 NE Not equal Zclear
0010 CS/HS Carry set / unsignedhigher orsame C set
0011 CC/LO Carry clear / unsigned | ower Cclear
0100 M Minus / negative N set
0101 PL Plus / positiveor zero N clear
0110 VS Overflow V set
0111 VC No overflow V clear
1000 HI Unsigned higher Cset andZclear
1001 LS Unsigned | ower or same Cclear or Z set
1010 GE Signed greater than or equal N equal s V
1011 LT Signedless than Nis not equal to V
1100 GT Signed greater than Z clear and N equals V
1101 LE Signedless than or equal ZsetorNisnot equal toV
1110 AL Always any
1111 NV Never (do not use!) none

44

Condition Field

In ARM state, all instructions are conditionally executed
according to the CPSR condition codes and the
Instruction’s condition field

Fifteen different conditions may be used

“Always” condition

— Default condition

— May be omitted

“Never” condition

— The sixteen (1111) is reserved, and must not be used

— May use this area for other purposes in the future

45

