

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution)

COIMBATORE – 35

23MAT201 – PARTIAL DIFFERENTIAL EQUATIONS AND TRANSFORMS

UNIT – II

FOURIER SERIES PART A TWO MARKS

1. Explain periodic function with two examples.

Solution: A function f(x) is said to have a period T if for all x, f(x + T) = f(x),

Where T is a positive constant. The least value of T > 0 is called the period of f(x).

For examples, f(x) = Sinx

 $f(x+2\pi) = Sin(x+2\pi) = Sinx$

Here, $f(x) = f(x + 2\pi)$

2. State Dirichlet's condition for a given function to expend in Fourier series.

Solution: Any function f(x) can be developed as a Fourier series, provided

- i) f(x) is periodic, single valued & finite.
- ii) f(x) has a finite number of discontinuities in any one period
- iii) f(x) has a finite number of maxima and minima

3. State general Fourier series.

solution: The Fourier series of f(x) in $c \le x \le c + 2l$ is

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{1} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{1}$$

Where a_0 , an & b_n are called Fourier coefficients(or) Euler constants

4. Find the coefficient of b_n of $\cos 5x$ in the Fourier cosine series of the function

 $f(x) = \sin 5x$ in the in the interval $(0, \pi)$.

Solution: The Fourier Cosine series is

$$b_{n} = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} \cos 5x \cos nx dx$$
$$= \frac{2}{\pi} \int_{0}^{\pi} [\cos(5+n)x + \cos(5-n)x] d$$

$$= \frac{2}{\pi} \left[\frac{\sin(5+n)x}{5+n} + \frac{\sin(5-n)x}{5-n} \right]_{0}^{\pi} = 0; \text{ Therefore, } b_{n} = 0$$

5. Find the constant a_0 of the Fourier series for the function of f(x)=x~ in $0\leq x\leq 2\pi$

Solution:

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx = \frac{1}{\pi} \int_0^{2\pi} x dx = \frac{1}{\pi} \left(\frac{x^2}{2} \right)_0^{2\pi} = 2\pi$$

6. Obtain the first term of the Fourier series for the function $f(x) = x^2$, $-\pi < x < \pi$.

Solution:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 dx = \frac{2}{\pi} \left(\frac{x^3}{3} \right)_{0}^{\pi} = \frac{2}{3} \pi^2$$

7. If $f(x) = x^3$, $-\pi < x < \pi$. Find the constant term of its Fourier series.

Solution:

 $f(x) = x^3$, is an odd function. Therefore, the fourier constants $a_0 = 0$

8. Find the constant term in the Fourier series expansion of f(x)=x in $(-\pi,\pi)$

Solution:

 $a_0 = 0$ since f(x) is an odd function $(-\pi, \pi)$

9. Find the sum of the Fourier series of $f(x) = x + x^2$ in $-\pi < x < \pi$ at $x = \pi$. Solution:

Given $f(x) = x + x^2$

Department of Mathematics

The sum of Fourier series is equal to the arithmetic mean of the value of $f(x)at x = \pi$ and $x = -\pi$.

Sum of Fourier series = $\frac{f(\pi) + f(-\pi)}{2} = \frac{\pi + \pi^2 - \pi + \pi^2}{2} = \pi^2$

10. What is the constant term a_0 and the coefficient of cosnx, a_n in the Fourier series of $f(x)=~x-x^3$ in $(-\pi,\pi).$

Solution:

$$f(x) = x - x^{3} \Longrightarrow f(-x) = -x + x^{3}$$
$$= -(x - x^{3}) = -f(x)$$

Therefore, f(x) is an odd function of x in $(-\pi, \pi)$. Therefore, the Fourier series of f(x) Contains sine terms only. Therefore, $a_0 = 0$ and $a_n = 0$

11. Find the root mean square value of the function $f(x) = x^2$ in the interval (0,1).

Solution:

RMS value =
$$\sqrt{\frac{1}{l}\int_{0}^{1} x^{2} dx} = \sqrt{\frac{1}{l}\left(\frac{x^{3}}{3}\right)_{0}^{1}} = \sqrt{\frac{1}{l}\left[\frac{l^{3}}{3}\right]} = \frac{1}{\sqrt{3}}$$

22. Define root mean square value of a function f(x) in a < x < b.

Solution:

R.M.S.value
$$\bar{y} = \sqrt{\frac{1}{b-a} \int_{a}^{b} [f(x)]^2 dx}$$

23 .State Parseval's identity for full range expansion of f(x) as Fourier series in (0,21).

Solution:

$$\frac{1}{l}\int_{0}^{2l} (f(x))^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \text{ where } a_0, a_n \text{ and } b_n \text{ are}$$

Department of Mathematics

Fourier coefficients in the expansion of f(x) as a Fourier series .

25. What do you mean by Harmonic Analysis?

Solution:

The process of finding the Fourier series for a function given by numerical value is known as harmonic analysis. In harmonic analysis

 $a_0 = 2$ (mean value of y in $(0, 2\pi)$)

 $a^{}_n = 2~(mean\,value\,of\,y\,Cos\,nx\,in~(0,\!2\pi))$

 $b_n = 2(\text{ mean value of y Sin nx in } (0,2\pi))$