

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Centre of Curvature

certie of warvature & corcle of currature Control of contrations in y = f(x) be $c(\bar{x}, \bar{y})$ where $\bar{x} = x - \frac{dy}{dx} \left[\frac{1 + \left(\frac{dy}{dx}\right)^2}{\frac{d^2y}{dx^2}} \right]$ $y = y + \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]}{\frac{d^2y}{dx^2}}$ Centre of currentwie at any Pi. on the curve $\overline{x} = x - \frac{y_1 \left[1 + y_1^2 \right]}{y_2}$ $\overline{9} = 9 + \left[\frac{1 + 9_1^2}{9_2} \right]$ custoftene at any point is $(x-\overline{x})^2+(y-\overline{y})^2=f^2$ when f is the laditus of custoftene. Find the centile and clude of autvature at (C, C) on $xy = c^2$. Givn. $xy = c^{a}$ $x \frac{dy}{dx} + y = 0$ $x \frac{dy}{dx} = -y$ $-\frac{y}{-y}$ Soin.

cs Scanned with CamScanner

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

Unit 3-Differential Calculus

Centre of Curvature

and
$$\frac{d^2 y}{dx^2} = \frac{[x \ y_1 - y(1)]}{x^2} = \frac{-x \ y_1 + y}{x^2}$$

At (c, c) , $y_2 = \frac{-c(-1) + c}{c^2} = \frac{2c}{c^2}$
 $\frac{y_2}{x_2} = \frac{2}{c}$
 $\therefore P = \frac{[1 + y_1^2]^{3/2}}{y_2}$
 $= \frac{2^{3/2}}{y_2} = \frac{c}{2} \cdot 2\sqrt{2}$
 $= \frac{2^{3/2}}{y_2} = \frac{c}{2} \cdot 2\sqrt{2}$
 $= \sqrt{2} \cdot c$

To find $\overline{x} \cdot 8 \cdot \overline{y}$:

 $\overline{x} = x - \frac{y_1 [1 + y_1^2]}{y_2} = x + \frac{1[1 + c - D^2]}{2/c}$
 $= x + \frac{2}{x} \cdot \frac{c}{2}$
 $= x + c$
 $\overline{y} = y + \frac{1 + y_1^2}{y_2} = y + \frac{1 + c - D^2}{2/c}$
 $= y + 2 \cdot x \cdot \frac{c}{2}$
 $\overline{y} = c + c = 2c$

Centre of contrature $(x - \overline{x})^2 + (y - \overline{y})^2 = P^2$
 $(x - 2c)^2 + (y - 2c)^2 = (c\sqrt{2})^2$

cs Scanned with CamScanner