

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35. An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

COURSE NAME : 19ITT202 – COMPUTER ORGANIZATION AND ARCHITECTURE

II YEAR/ III SEMESTER

UNIT – II Arithmetic Operations

Topic: Design of Fast Adders

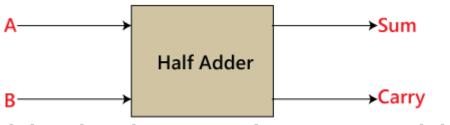
Mrs. G.Vanitha

Assistant Professor

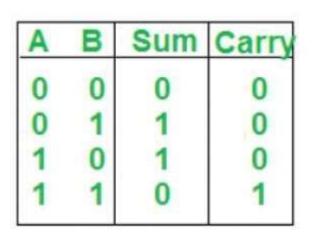
Department of Computer Science and Engineering

HALF

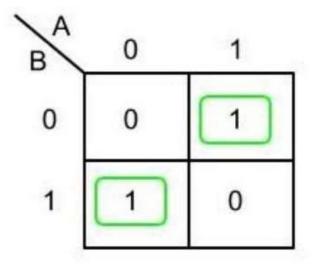
- ADDER dder is a combinational circuit that performs addition / subtraction operation for two input values and gives the output SUM and CARRY.
- The carry of previous operation is not carried for next operation.

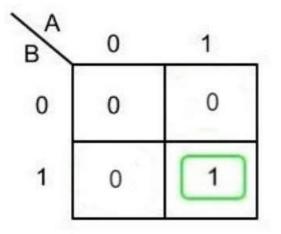


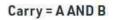
- The addition of 2 bits is done using a combination circuit called a Half adder.
- The input variables are augend and addend bits and output variables are sum & carry bits. A and B are the two input bits.



$$S = A \oplus B$$





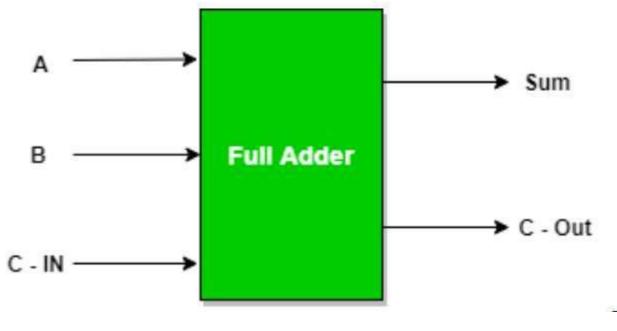


Sum = A XOR B



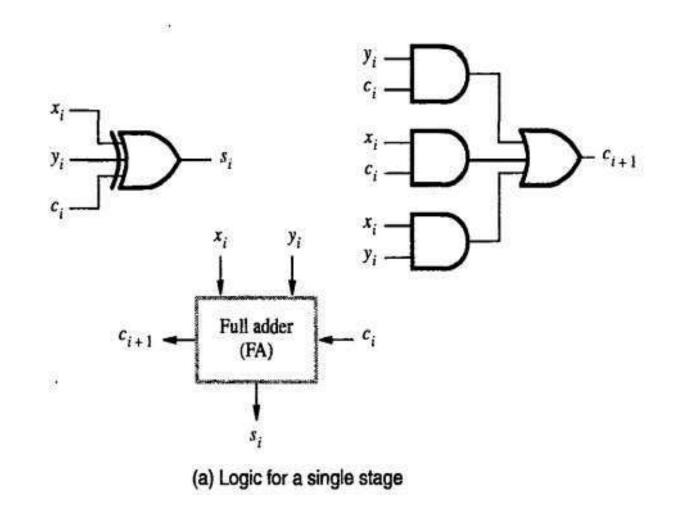
FULL ADDER

- A complete circuit to perform a single stage of addition is called as a full adder (FA).
- It is used to add 3 values.



x _i	y _i	Carry-in c _i	Sum s _i	Carry-out ci+1
0	0	0	0	0
0	0	1	1	0
0	1	0	1 .	0
0.	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

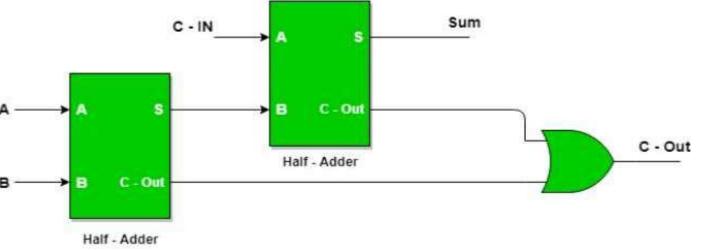
ŝ



Construction of Full Adder from 2 Half

Adder

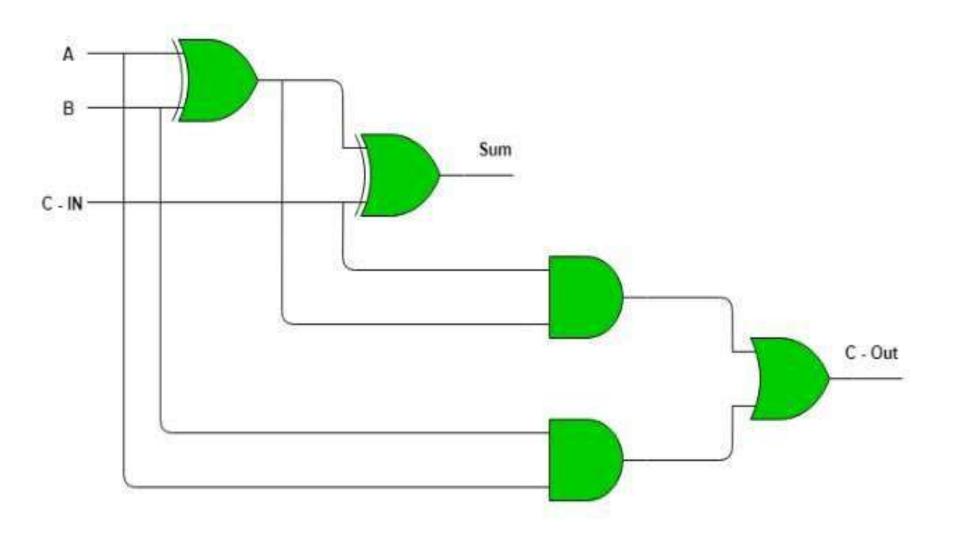
- A full adder can be constructed with the help of two half adder (HA)
- The difference is that the carry of the previous sum can be given as input for the next addition/operation in full adder.



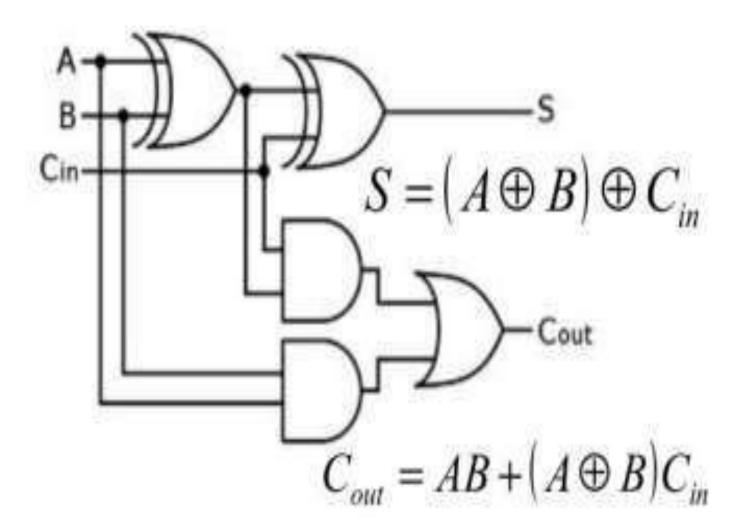
inputs			Outputs	
Α	B	C-IN	Sum	C - Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 $S = (A \oplus B) \oplus C_{in}$

 $C_{out} = AB + (A \oplus B)C_{in}$



Full Adder logic circuit.



CARRY-LOOK AHEAD

ADD A fast adder circuit must speed up the generation of the carry signals. The logic expressions for s_i (sum) and c_{i+1} (carry-out) of stage *i* (see Figure 6.1) are

$$s_i = x_i \oplus y_i \oplus c_i$$

and

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

Factoring the second equation into

$$c_{i+1} = x_i y_i + (x_i + y_i)c_i$$

we can write

 $c_{i+1} = G_i + P_i c_i$

where

$$G_i = x_i y_i$$
 and $P_i = x_i + y_i$

The expressions G_i and P_i are called the generate and propagate functions for stage *i*.

Expanding c_i in terms of i - 1 subscripted variables and substituting into the c_{i+1} expression, we obtain

$$c_{i+1} = G_i + P_i G_{i-1} + P_i P_{i-1} c_{i-1}$$

÷

Continuing this type of expansion, the final expression for any carry variable is $c_{i+1} = G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + \dots + P_i P_{i-1} \dots P_1 G_0 + P_i P_{i-1} \dots P_0 c_0 \quad [6.1]$

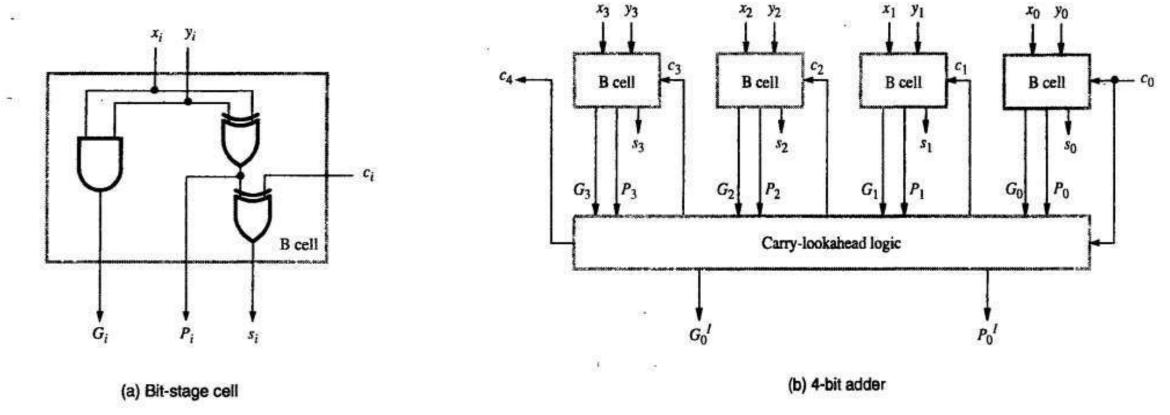
Let us consider the design of a 4-bit adder. The carries can be implemented as

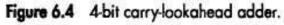
 $c_1 = G_0 + P_0 c_0$

 $c_2 = G_1 + P_1 G_0 + P_1 P_0 c_0$

 $c_3 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 c_0$

 $c_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0c_0$





The complete 4-bit adder is shown in Figure 6.4b. The carries are implemented in the block labeled carry-lookahead logic. An adder implemented in this form is called a *carry-lookahead adder*.

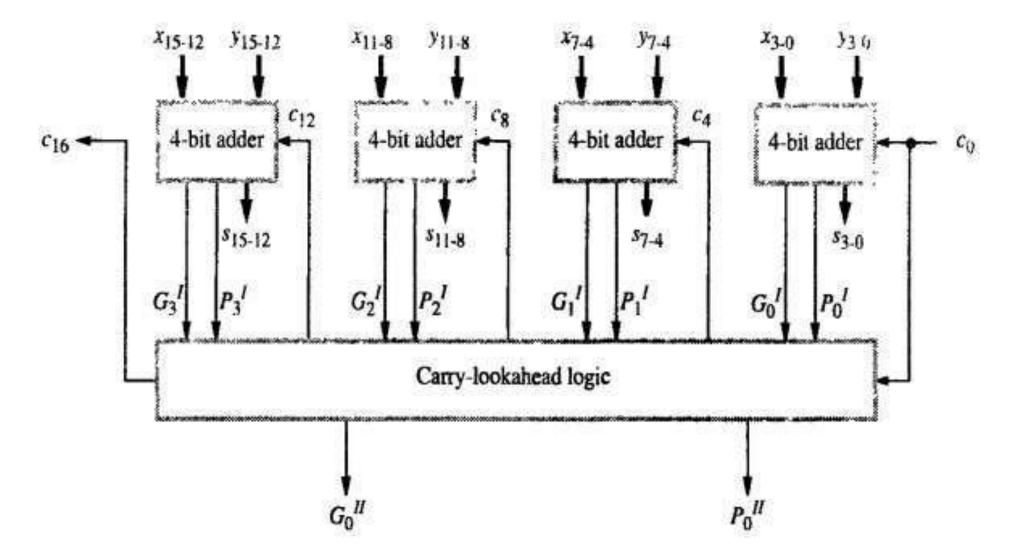


Figure 6.5 16-bit carry-lookahead adder built from 4-bit adders (see Figure 6.4b).

