

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE-35.

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai.

DEPARTMENT OF AUTOMOBILE ENGINEERING

COURSE NAME : 19AUT302 – VEHICLE DYNAMICS AND STRUCTURES

III YEAR / V SEMESTER

Unit 3 – Vertical Dynamics

Topic : Design and analysis of Active suspension using Quarter car model

INTRODUCTION

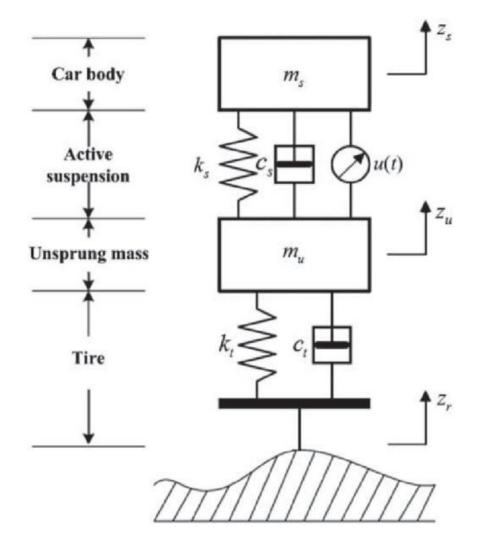
- The design and analysis of an active suspension system using a quarter car model involves developing a model that simulates a vehicle's vertical dynamics over rough terrain.
- A quarter car model approximates a vehicle as a 2-degree-of-freedom system, representing the interaction between the suspension and the road for a single wheel.

OVERVIEW

The quarter car model consists of two masses:

- Sprung mass (m₁): Represents the vehicle body.
- Unsprung mass (m₂): Represents the wheel and axle assembly.
- The suspension system is designed to isolate the vehicle's body (sprung mass) from road disturbances.
- In an active suspension, additional forces (usually from actuators) are introduced to improve ride comfort and stability.

KEY COMPONENTS



- **Sprung mass (m₁):** Mass of the vehicle's body over the suspension.
- **Unsprung mass (m₂):** Mass of the wheel, tire, and other components.
- Spring (k₁, k₂): Suspension spring (k₁) and tire stiffness (k₂).
- Damper (c₁): Suspension damping coefficient.
- Active force (F_a): Force generated by an actuator in the active suspension system.
- *** Road disturbance (z₀):** Input representing road irregularities.

ACTIVE SUSPENSION SYSTEM USING QUARTER CAR MODEL

MATHEMATICAL MODELLING

- The quarter car model can be represented by two second-order differential equations that describe the motion of the sprung and unsprung masses.
- These equations involve Newton's second law for vertical motion:
 For the sprung mass:

$$m_1 \ddot{z_1} = -k_1 (z_1 - z_2) - c_1 (\dot{z_1} - \dot{z_2}) + F_a$$

For the unsprung mass:

$$m_2 \ddot{z_2} = k_1 (z_1 - z_2) + c_1 (\dot{z_1} - \dot{z_2}) - k_2 (z_2 - z_0) - F_a$$

Where:

29/09/2024

- z_1 and z_2 are the displacements of the sprung and unsprung masses.
- $\vec{z_1}, \vec{z_2}$ are the velocities, and $\vec{z_1}, \vec{z_2}$ are the accelerations.
- F_a is the control force applied by the actuator.

19AUT302 – Vehicle Dynamics and Structures/ Lt. P.Leon Dharmadurai (AP/ AUTO / SNSCT)

ACTIVE SUSPENSION CONTROL DESIGN

- The goal of active suspension control is to improve ride comfort and road handling by adjusting the suspension dynamics in real-time using sensors and actuators.
- Control strategies typically include PID Control (Proportional-Integral-Derivative), Optimal Control (LQR), Model Predictive Control (MPC)
- The control force is designed based on the vehicle's response to road disturbances and the desired performance objectives, such as minimizing body acceleration, minimizing suspension deflection, and limiting the tire-road force variation.

SIMULATION OF QUARTER CAR MODEL

To analyze the suspension system, a simulation can be conducted using software such as MATLAB/Simulink. The steps are as follows:

- Step 1: Define Parameters: Set values for sprung mass (m₁), unsprung mass (m₂), spring stiffness (k₁, k₂), damper coefficient (c₁), and initial conditions for displacements and velocities.
- Step 2: Implement Equations of Motion: Code the differential equations into Simulink or MATLAB.
- Step 3: Apply Road Disturbance Input: Introduce road profiles like a sine wave, bump, or random road disturbance to simulate the vehicle's interaction with

uneven roads.

29/09/2024

SIMULATION OF QUARTER CAR MODEL

Step 4: Analyze System Response:

- Sprung mass displacement (ride comfort),
- Suspension travel (suspension stroke),
- Tire force variation (road holding),
- Body acceleration (ride comfort),
- ***** Active force requirements (actuator limits).

PERFORMANCE METRICS FOR ANALYSIS

The performance of the active suspension system is evaluated based on several key metrics:

- *** Ride comfort:** Measured by the acceleration of the vehicle body (sprung mass).
- *** Road holding:** Ensured by controlling the contact force between the tire and road.
- Suspension travel: Must be within safe limits to avoid bottoming out or topping out of the suspension.
- Actuator effort: Evaluating the force applied by the actuator in the active suspension.

THANK YOU !!!