

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

19ECE301 – IMAGE PROCESSING AND COMPUTER VISION

III B.E. ECE / V SEMESTER

UNIT 2 – IMAGE ENHANCEMENT AND RESTORATION

TOPIC – CONSTRAINED LEAST SQUARE FILTER

IMAGE RESTORATION/19ECE301-IMAGE PROCESSING AND COMPUTER VISION/S.V.LAKSHMI/AP/ECE/SNSCT

CONSTRAINED LEAST SQUARE FILTERING

When we do not have information on the power spectra the Wiener filter is not optimal

Constrained least squares filter is an extension of Wiener filter where the deconvolution does not require information of the noise

> The constrained approach tries to enforce a constraint to represent some degree of smoothness so that resultant image is smooth and noise free

Q is represented as \exists Q = Min $\begin{cases} M-1 & N-1 \\ Z & Z' \\ X=0 & Y=0 \end{cases} \begin{bmatrix} \nabla^2 f(X, \gamma) \end{bmatrix}^2 \\ \end{cases}$

CONSTRAINED LEAST SQUARE FILTERING

mask
$$P(x,y) = \begin{bmatrix} 0 & -1 & 0 \\ -1 & y & -1 \\ 0 & -1 & 0 \end{bmatrix}$$
 * This
x Let $P(u, v) \rightarrow$ Fourier
Transform
of matrix
* Minimization of second order
derivative of image
 $\|g - H\hat{f}\|^2 = \|n\|^2$
 \downarrow solution
 $\|g - H\hat{f}\|^2 = \|n\|^2$
 \downarrow solution
 $\|g_{f}\| = \hat{f}^T q^T q \hat{f}$
 $\|g_{f}\| = \hat{f}^T q^T q \hat{f}$
 $\|g_{f}\| = \hat{f}^T q^T q \hat{f}$

IMAGE RESTORATION/19ECE301-IMAGE PROCESSING AND COMPUTER VISION/S.V.LAKSHMI/AP/ECE/SNSCT

$\int_{1}^{2} = \left| \left| n \right| \right|_{1}^{2} \pm c$ $m_{1} |m_{1}|^{2} = m_{N}(\sigma_{1}^{2} + m_{n}^{2})$

re residual difference be H-2f

G(4,0) e the Legree

solution leads to a n freg domain, $-) = \left[\frac{|H(u,v)|^{2}}{|H(u,v)|^{2} + \gamma |P(u,v)|^{2}} \right]$

For obtaining the optimal filter, the parameter vshould be tuned. Procedure for tuning is:

) specify an initial value of r
2) compute
$$\hat{f}$$
 and $||\mathcal{H}||^2$
3) check wheeter, $\mathcal{R}(u,v) = G_1$
 $\rightarrow Tf \ \gamma es$, then $STOP$
 $\rightarrow Tf \ ||\mathcal{H}||^2 < ||\mathcal{H}||^2$, Tm
 $\rightarrow ELSE if ||\mathcal{H}||^2 > ||\mathcal{H}||^2$.
decrease the

 $_2(u,v) - H(u,v) \hat{F}(u,v)$

crease the value of of

+ a, value of r

IMAGE RESTORATION/19ECE301-IMAGE PROCESSING AND COMPUTER VISION/S.V.LAKSHMI/AP/ECE/SNSCT

