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                                                    PART A 

 

1. Mention the problem solving techniques in AI. 

                  AI problem-solving techniques include: 

 

• Search Algorithms 

• Optimization 

• Logic-Based 

• Machine Learning 

• Knowledge-Based 

• Heuristics 

• Neural Networks 

• Game Theory 

    

 

2. Distinguish between informed and uninformed search strategies 

                   Informed search uses heuristics to guide the search toward the goal 

efficiently (e.g., A*), while uninformed search explores blindly without any extra 

knowledge beyond the problem definition (e.g., BFS, DFS). Informed is faster 

but more complex, uninformed is simpler but can be slower. 

 

 

3. Define constraint satisfaction 

 



A constraint satisfaction problem (CSP) is a mathematical question where 

the goal is to find a solution that satisfies a set of constraints or conditions. 

In CSP, you are typically provided with: 

 

• Variables 

• Domains 

• Constraints 

    

 

4. What do you mean by logical agents? 

                  Logical agents are artificial intelligence systems that use formal 

logic to represent knowledge and reason about it. They apply logical statements 

to draw conclusions, make decisions, and take actions based on their 

understanding of the world. These agents are capable of updating their 

knowledge as new information becomes available and are commonly used in 

areas like automated reasoning, planning, and natural language processing. 

 

 

5. Justify the need of inferences. 

              Inferences are crucial because they help us understand hidden 

meanings, fill gaps in knowledge, make decisions with incomplete data, and 

reason efficiently without needing all the facts upfront. 

 

 

                                              PART- B 

6. (a)  Discuss in detail about the structure of different agents in artificial 

intelligence 

                   In Artificial Intelligence (AI), agents are entities capable of 

perceiving their environment through sensors and acting upon it using actuators 

to achieve specific goals. AI agents can be designed to operate in a wide range 

of environments, from simple static ones to highly dynamic and complex 

settings. Based on their capabilities and design, AI agents can be classified into 

several types, each with its unique structure and behavior. Below is a detailed 

discussion of the different types of agents in AI: 



1. Simple Reflex Agents 

A simple reflex agent selects actions based solely on the current state of the 

environment, ignoring the history of previous states. These agents follow a 

condition-action (or rule-based) approach where the decision is made according 

to if-then rules. 

 

Structure: 

Perception: The agent perceives the environment. 

Action Selection: It applies a set of condition-action rules (like "if condition, 

then action") to determine the action. 

No Memory or Learning: They don't keep track of past states and are incapable 

of learning. 

Example: 

A thermostat that turns on a heater if the temperature falls below a certain 

threshold. 

Limitations: 

Inefficient in complex or dynamic environments because they only react to the 

current percept, without any consideration of the history or planning. 

 

2. Model-Based Reflex Agents 

A model-based reflex agent is an improvement over the simple reflex agent. It 

maintains some internal state that tracks aspects of the world that cannot be 

observed directly at every moment. 

 

Structure: 

Internal Model: It maintains an internal model of the world to track unseen or 

implicit aspects of the environment. 

State Update: The agent updates its internal state using the current percept and 

the previous state. 

Rules or Conditions: Like simple reflex agents, it uses condition-action rules but 

considers both current perceptions and the internal state. 



Action Selection: Decides on the appropriate action based on the current state 

and internal model. 

Example: 

A robot vacuum cleaner that tracks where it has already cleaned, allowing it to 

make decisions based on both the current state and previous information. 

Advantages: 

More effective in partially observable environments because the internal model 

can help account for unseen changes. 

 

3. Goal-Based Agents 

A goal-based agent considers not just the current state but also aims to achieve 

specific goals. It uses information about the environment to evaluate potential 

actions based on how likely they are to achieve the desired goal. 

 

Structure: 

Goal Information: The agent is provided with one or more goals. 

Planning: It searches through possible actions or states to find a sequence that 

will lead to the goal. 

Internal State: It maintains knowledge about the environment to help guide the 

planning process. 

Example: 

A navigation system that computes a route to reach a desired destination by 

evaluating possible paths and choosing the one that will achieve the goal. 

Advantages: 

Provides more flexible behavior than reflex agents because it involves forward-

looking planning to achieve goals. 

Limitations: 

May require significant computational resources if there are many possible 

actions or goals to evaluate. 

 

4. Utility-Based Agents 



A utility-based agent goes beyond goal-based agents by not only aiming to 

achieve goals but also considering the best way to achieve those goals. It 

assigns a utility value to different outcomes and selects actions that maximize 

expected utility. 

 

Structure: 

Utility Function: The agent uses a utility function to measure the "goodness" or 

desirability of different states or actions. 

Decision Making: It evaluates actions based on how much utility each action 

brings toward achieving a goal. 

Optimization: The agent selects the action that maximizes the utility or expected 

outcome, considering various factors like cost, time, and risk. 

Example: 

An autonomous vehicle that selects a route not just based on reaching a 

destination, but also factors in traffic, road conditions, and fuel efficiency to 

choose the optimal path. 

Advantages: 

More flexible than goal-based agents because it allows the agent to weigh trade-

offs and make decisions that balance multiple objectives. 

Limitations: 

Requires a well-defined utility function, which can be difficult to define in 

complex environments. 

 

                                                  (OR) 

(b) Analyze how breadth first and depth first search algorithm to minimise the 

total estimated cost 

 

Breadth-First Search (BFS) and Depth-First Search (DFS) are two classic search 

algorithms, but neither is directly designed to minimize the total estimated cost 

in problems where path cost matters. Instead, these algorithms are often used in 

problems where all step costs are equal. However, they can be adapted or 

combined with other techniques to minimize total estimated costs. Here’s a 



breakdown of how BFS and DFS work, and how they relate to cost 

minimization: 

 

1. Breadth-First Search (BFS) 

Overview: 

BFS explores all nodes at the present depth level before moving on to nodes at 

the next depth level. This guarantees finding the shortest path in an unweighted 

graph (i.e., all edges have the same cost), but not in a weighted graph. 

How BFS Works: 

Start from the initial node. 

Explore all adjacent nodes. 

Move to the next level and repeat until the goal is found. 

Cost Minimization in BFS: 

BFS is optimal for unweighted graphs because it explores nodes level by level. 

In such cases, the total cost is proportional to the depth of the node, and BFS 

guarantees finding the shallowest solution (i.e., the one with the least number of 

steps). 

 

In weighted graphs, BFS cannot directly minimize cost, as it treats all edges as 

having equal weight. To address this, we use Uniform-Cost Search (UCS), 

which is essentially BFS but prioritizes nodes based on path cost rather than 

depth. UCS is optimal and complete, ensuring that the least-cost solution is 

found in weighted graphs. 

2. Depth-First Search (DFS) 

Overview: 

DFS explores a path from the start node to the deepest node before 

backtracking. DFS does not guarantee the shortest path, and it can get stuck in 

deep, unproductive branches. However, it uses less memory compared to BFS, 

as it only needs to store nodes on the current path. 

How DFS Works: 

Start from the initial node. 



Explore as far down a branch as possible before backtracking. 

Continue exploring new branches until the goal is found. 

Cost Minimization in DFS: 

DFS is not optimal: It does not minimize cost because it explores paths without 

considering their lengths or costs. 

 

Limited DFS (or Iterative Deepening DFS) can help in some cases by 

progressively increasing the depth limit. This way, it behaves like BFS and can 

find the shallowest solution, but it's still not ideal for minimizing costs in 

weighted graphs. 

 

7. (a) Explain in detail about first order logic with prepositional logic 

 

First-order logic (FOL) and propositional logic are both formal systems used in 

mathematical logic and computer science for representing and reasoning about 

knowledge, but they differ in expressiveness and structure. Let's break down 

each and then compare them. 

 

1. Propositional Logic (PL) 

Propositional logic is the simplest form of logic that deals with propositions or 

statements that are either true or false. It involves: 

 

Atomic propositions: The most basic statements, which are indivisible and can 

either be true or false. For example, P, Q, and R could represent statements like 

"It is raining" or "The sky is blue." 

Logical connectives: Used to combine or modify propositions. Common 

connectives include: 

AND (∧): P ∧ Q (both P and Q must be true) 

OR (∨): P ∨ Q (either P or Q, or both, must be true) 

NOT (¬): ¬P (P is false) 

Implication (→): P → Q (if P is true, then Q must be true) 



Biconditional (↔): P ↔ Q (P is true if and only if Q is true) 

Example of Propositional Logic: 

P: "It is raining." 

Q: "The ground is wet." 

Using these propositions, we can form a statement like: 

P → Q (If it is raining, then the ground is wet). 

However, propositional logic is limited. It cannot express relationships between 

objects, quantify over objects, or represent properties of objects (like "all 

humans are mortal"). To handle more complex reasoning, we need first-order 

logic. 

2. First-Order Logic (FOL) 

First-order logic (also called predicate logic) extends propositional logic by 

introducing: 

 

Objects: Entities in the domain of discourse (e.g., specific people, animals, 

numbers). 

Predicates: Functions that describe properties or relations between objects. 

Predicates return true or false. 

Example: Likes(John, Pizza) means "John likes pizza." 

Quantifiers: These allow FOL to express statements about "some" or "all" 

objects in a domain: 

Universal quantifier (∀): Represents "for all". For example, ∀x (Human(x) → 

Mortal(x)) means "For all x, if x is a human, then x is mortal." 

Existential quantifier (∃): Represents "there exists". For example, ∃x (Cat(x) ∧ 

Black(x)) means "There exists an x such that x is a black cat." 

Syntax of First-Order Logic 

Terms: Objects in the domain (constants, variables, or functions). 

Constants: Represent specific objects (e.g., John, Pizza). 

Variables: Represent general objects (e.g., x, y, z). 

Functions: Return a single object (e.g., MotherOf(x) represents the mother of x). 



Atomic Formulas: Apply a predicate to a set of terms, such as Likes(John, 

Pizza) or Loves(x, y). 

Complex Formulas: Combine atomic formulas with logical connectives and 

quantifiers, like ∀x ∃y (Loves(x, y)) (For every person x, there exists a person y 

such that x loves y). 

Example of First-Order Logic: 

Predicate: Loves(x, y) could represent "x loves y". 

Quantified statement: 

∀x ∃y (Loves(x, y)): "For every person x, there is a person y whom x loves." 

∃x ∀y (Loves(x, y)): "There is a person x who loves every person y." 

Why First-Order Logic is More Expressive: 

Propositional logic cannot handle statements about individuals, their properties, 

or relationships between individuals. For example: 

Propositional logic might represent "John loves Mary" and "John loves pizza" 

as two unrelated atomic statements P and Q. 

First-order logic allows a deeper analysis by representing the relationship: 

Loves(John, Mary) and Loves(John, Pizza). 

 

                                                      (OR) 

 

(b) Peter can play cricket. Peter cannot play tennis. He can play tennis and 

cricket .He can play tennis and badminton .If Peter can play tennis then he can 

play badminton .He can play tennis if and only if he can play badminton. Derive 

implication statement in terms  of proportional logic with truth table 

 

Propositional Variables: 

Let C = "Peter can play cricket" 

Let T = "Peter can play tennis" 

Let B = "Peter can play badminton" 

Extracted Statements: 



"Peter can play cricket" →  

C 

C 

"Peter cannot play tennis" →  

¬ 

T 

¬T 

"He can play tennis and cricket" →  

T 

∧ 

C 

T∧C 

"He can play tennis and badminton" →  

T 

∧ 

B 

T∧B 

"If Peter can play tennis, then he can play badminton" →  

T 

→ 

B 

T→B 

"He can play tennis if and only if he can play badminton" →  

T 

↔ 

B 

T↔B 



Implication to Derive: 

We need to express all these conditions as a single logical implication statement. 

 

From the last two conditions: 

 

𝑇 

→ 

𝐵 

T→B (If Peter can play tennis, he can play badminton) 

𝑇 

↔ 

𝐵 

T↔B (He can play tennis if and only if he can play badminton) 

This suggests that playing tennis and badminton are logically equivalent. Thus, 

the implication statement combining these conditions can be written as: 

Truth Table: 

We will now construct a truth table for  

𝑇 

↔ 

𝐵 

T↔B along with the other important expressions  

𝑇 

→ 

𝐵 

T→B and  

𝑇 

∧ 

𝐵 



T∧B, considering all possible combinations of truth values for  

𝑇 

T,  

𝐵 

B, and  

𝐶 

C. 

 

 

 

8. (a) Apply the steps involved in search through problems face for 8 queens 

and explain in detail 

The 8 Queens problem is a classic example of a constraint satisfaction 

problem (CSP), where the objective is to place 8 queens on a chessboard 

such that no two queens threaten each other. A queen can attack another 

queen if they are in the same row, column, or diagonal. The goal is to find all 

valid configurations for placing 8 queens. 

 

The problem can be solved using several search strategies, including 

backtracking and depth-first search (DFS). Let’s break down the steps 

involved in searching through this problem in detail. 



 

Problem Statement: 

We need to place 8 queens on an 8x8 chessboard so that no two queens are 

on the same row, column, or diagonal. 

 

Step 1: Problem Representation 

Search Space: The search space consists of all possible ways to place queens 

on the board. Since a queen can be placed in any row and column, the total 

number of potential placements is 

8 

! 

= 

8 

× 

7 

× 

6 

× 

. 

. 

. 

× 

1 

= 

40 

, 

320 

8!=8×7×6×...×1=40,320 possible configurations. However, most of these 

configurations will violate the attack constraints. 



Constraints: 

 

No two queens should be in the same row. 

No two queens should be in the same column. 

No two queens should be on the same diagonal. 

Step 2: Define the State 

A state in this problem is defined by a partial arrangement of queens on the 

board. At each step, a queen is placed on one row in a valid column. The 

algorithm must ensure that the new queen does not attack any of the 

previously placed queens. 

 

We can represent the state as a list of column numbers where the queens are 

placed in each row. For example, if the list is [4, 6, 1, 5], this means: 

 

Queen in row 1 is in column 4, 

Queen in row 2 is in column 6, 

Queen in row 3 is in column 1, 

Queen in row 4 is in column 5. 

Step 3: Search Strategy 

The most commonly used search strategy for the 8 Queens problem is 

Backtracking. This is a type of depth-first search (DFS) that explores all 

possibilities and backtracks when a conflict is found. 

3.1 Backtracking Approach: 

Start with an empty board (no queens placed). 

Place a queen in the first row in the first column. 

Move to the next row and try to place a queen in a column where it does not 

conflict with the previously placed queens (no two queens in the same 

column or diagonals). 

If a valid position is found, move to the next row and repeat step 3. 



If no valid position is found in a row, backtrack to the previous row and try 

the next column for the previous queen. 

Continue this process until queens have been placed in all 8 rows 

Step 4: Conflict Checking 

Each time we place a queen, we need to check whether it violates any of the 

constraints: 

 

Same Column: No two queens can be in the same column. This is easily 

ensured by maintaining a record of which columns have been occupied. 

Same Diagonal: Two queens are on the same diagonal if the difference 

between their row indices equals the difference between their column 

indices. 

Step 5: Backtracking Algorithm 

Here is the high-level structure of the backtracking algorithm: 

 

Recursive Function: 

 

Define a function solve(row) that tries to place a queen in a valid column of 

the current row. 

If row == 8 (all queens placed), print the solution. 

Otherwise, try placing a queen in each column of the current row and check 

for conflicts. 

The base case occurs when 8 queens have been placed, meaning a valid 

solution has been found. 

 



 

 

 

 

 

 

                                                  (OR) 

(b)   Explain A* algorithm and find the shortest path from ‘a to z ‘ using the 

following graph. 

Components of A* Algorithm 

Graph Representation: The algorithm operates on a graph, which can be 

represented as nodes (or vertices) connected by edges. 

 

Cost Functions: 

 

g(n): The actual cost from the start node to node  

𝑛 



n. 

h(n): A heuristic estimated cost from node  

𝑛 

n to the target node. This must be an admissible heuristic, meaning it never 

overestimates the true cost. 

f(n): The total estimated cost of the cheapest solution through node  

𝑛 

n: 

𝑓 

( 

𝑛 

) 

= 

𝑔 

( 

𝑛 

) 

+ 

ℎ 

( 

𝑛 

) 

f(n)=g(n)+h(n) 

Open List: A priority queue that contains nodes that need to be evaluated, sorted 

by their  

𝑓 

( 

𝑛 



) 

f(n) values. 

 

Closed List: A list of nodes that have already been evaluated. 

 

Steps of the A* Algorithm 

Initialization: Start with the open list containing the start node. Set 

𝑔 

( 

𝑠 

𝑡 

𝑎 

𝑟 

𝑡 

) 

= 

0 

g(start)=0 and calculate  

𝑓 

( 

𝑠 

𝑡 

𝑎 

𝑟 

𝑡 

) 

= 



ℎ 

( 

𝑠 

𝑡 

𝑎 

𝑟 

𝑡 

) 

f(start)=h(start). 

 

Main Loop: 

While the open list is not empty: 

Select Node: Remove the node  

𝑛 

n with the lowest  

𝑓 

( 

𝑛 

) 

f(n) from the open list. 

Goal Check: If  

𝑛 

n is the target node, reconstruct the path and return it. 

Generate Successors: For each neighbor of  

𝑛 

n: 

Calculate  



𝑔 

g score (actual cost) to reach the neighbor. 

If the neighbor is not in the open list or has a lower  

𝑔 

g score, update its  

𝑔 

g,  

ℎ 

h, and  

𝑓 

f values, and add it to the open list if not already present. 

Move  

𝑛 

n to the closed list. 

Path Reconstruction: Once the target is found, backtrack from the target node to 

the start node using parent pointers to reconstruct the path. 

 



 


