

# SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)



**COIMBATORE-35** 

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

### DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

### **COURSE NAME: 19EEB301/ CONTROL SYSTEMS**

### III YEAR / V SEMESTER

### Unit III – FREQUENCY RESPONSE

Topic : Bode Plot



# **Bode Plot**



- A graph is called as Bode plot which is frequently used in control system engineering to assess a control system's stability.
- The Bode plot or the Bode diagram consists of two plots
  - Magnitude plot
  - Phase plot
- The magnitude of the open loop transfer function in dB is -

 $M=20log|G(j\omega)H(j\omega)|$ 

• The phase angle of the open loop transfer function in degrees is

 $\phi = \angle G(j\omega)H(j\omega)$ 



# **Rules for Construction of Bode Plots**



- Represent the open loop transfer function in the standard time constant form.
- Substitute,  $s=j\omega$  in the given equation.
- Find the corner frequencies and arrange them in ascending order.
- Consider the starting frequency of the Bode plot as 1/10th of the minimum corner frequency or 0.1 rad/sec whichever is smaller value and draw the Bode plot upto 10 times maximum corner frequency.
- Draw the magnitude plots for each term and combine these plots properly.
- Draw the phase plots for each term and combine these plots properly.

|         | Type of<br>term        | G(jω)H(jω)              | Slope(dB/dec) | Magnitude<br>(dB)                                                                                                     | Phase<br>angle(degrees)                                                                                       | SIS               |
|---------|------------------------|-------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------|
| 10/1/20 | Constant               | K                       | 0             | $20\log K$                                                                                                            | 0                                                                                                             | www.snsgroups.con |
|         | Zero at<br>origin      | $j\omega$               | 20            | $20\log\omega$                                                                                                        | 90                                                                                                            |                   |
|         | `n′ zeros<br>at origin | $(j\omega)^n$           | 20~n          | $20n\log\omega$                                                                                                       | 90 n                                                                                                          |                   |
|         | Pole at<br>origin      | $\frac{1}{j\omega}$     | -20           | $-20\log\omega$                                                                                                       | $-90 \ or \ 270$                                                                                              |                   |
|         | `n' poles<br>at origin | $\frac{1}{(j\omega)^n}$ | -20 n         | $-20 n \log \omega$                                                                                                   | -90 n or 270 n                                                                                                |                   |
|         | Simple<br>zero         | $1+j\omega r$           | 20            | $\begin{array}{l} 0 \ for \ \omega \\ < \frac{1}{r} \\ 20 \ \log \omega r \\ for \ \omega > \frac{1}{r} \end{array}$  | $\begin{array}{l} 0 \ for \ \omega < \frac{1}{r} \\ 90 \ for \ \omega > \frac{1}{r} \end{array}$              |                   |
|         | Simple<br>pole         | $rac{1}{1+j\omega r}$  | -20           | $\begin{array}{l} 0 \ for \ \omega \\ < \frac{1}{r} \\ -20 \ \log \omega r \\ for \ \omega > \frac{1}{r} \end{array}$ | $\begin{array}{l} 0 \ for \ \omega < \frac{1}{r} \\ -90 \ or \ 270 \ for \\ \omega > \frac{1}{r} \end{array}$ | 4                 |



# **Bode Plot**



- Consider the open loop transfer function G(s)H(s)=K
- Magnitude M=20logK
- Phase angle  $\phi=0$  degrees
- If K=1, then magnitude is 0 dB.
- If K>1, then magnitude will be positive.
- If K<1, then magnitude will be negative.
- The following figure shows the corresponding Bode plot.





# **Bode Plot**



- Consider the open loop transfer function G(s)H(s)=s
- Magnitude M=20logω dB
- Phase angle  $\phi = 90^{\circ}$ ullet
- At  $\omega = 0.1 \omega = 0.1$  rad/sec, the magnitude is -20 dB. •
- At  $\omega = 1\omega = 1$  rad/sec, the magnitude is 0 dB.
- At  $\omega = 10\omega = 10$  rad/sec, the magnitude is 20 dB.
- The following figure shows the corresponding Bode plot.





# Thank You

19EEB301/CS/C.Ramya/AP/EEE

7