
Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 1 Page 1 of 11

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai
Accredited by NAAC-UGC with ‘A++’ Grade (Cycle III) &

Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT)

COIMBATORE-641 035, TAMIL NADU

UNIT II – Control Statements and Constructors

Control structures – Arrays - Objects and classes: Classes – Access Specifiers – methods

and attributes - constructors: Default Constructor – Parameterized Constructor –

Copy Constructor- Garbage collection.

Constructors: Default Constructor

Definition

 A constructor is a block of codes similar to the method.

 It is called when an instance of the class is created.

 At the time of calling constructor, memory for the object is allocated in the

memory.

 It is a special type of method which is used to initialize the object.

Every time an object is created using the new() keyword, at least one constructor is called.

It calls a default constructor if there is no constructor available in the class. In such case,

Java compiler provides a default constructor by default.

Rules for creating constructor in java

There are two rules defined for the constructor.

1. Constructor name must be the same as its class name

2. A Constructor must have no explicit return type

3. A Java constructor cannot be abstract, static, final, and synchronized

Note - can use access modifiers while declaring a constructor. It controls the object creation. In

other words, we can have private, protected, public or default constructor in Java.

Types of constructors in java

There are two types of constructors in Java:

1. Default constructor (no-arg constructor)

2. Parameterized constructor

3. Copy Constructor

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 1 Page 2 of 11

Default Constructor

A constructor is called "Default Constructor" when it doesn't have any parameter.

Syntax

<class_name>()

{

}

Example 1

class Bike1{

Bike1()

{

System.out.println("Bike is created");

}

public static void main(String args[])

{

Bike1 b=new Bike1();

}

}

Example 2

class Main

{

int i;

private Main()

{

i = 5;

System.out.println("Constructor is called");

}

public static void main(String[] args)

{

Main obj = new Main();

System.out.println("Value of i: " + obj.i);

}

}

Constructor is called

Value of i: 5

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 1 Page 3 of 11

Parameterized Constructor

A constructor which has a specific number of parameters is called a parameterized

constructor.

Why use the parameterized constructor?

The parameterized constructor is used to provide different values to distinct

objects. However, you can provide the same values also.

Example

In this example, we have created the constructor of Student class that have two

parameters. We can have any number of parameters in the constructor.

class Student4{

 int id;

 String name;

 Student4(int i,String n)

 {

 id = i;

 name = n;

 }

 void display(){System.out.println(id+" "+name);}

 public static void main(String args[]){

 Student4 s1 = new Student4(111,"Karan");

 Student4 s2 = new Student4(222,"Aryan");

 s1.display();

 s2.display();

 }

}

111 Karan

 222 Aryan

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 1 Page 4 of 11

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 1 Page 5 of 11

this keyword

this is a reference variable that refers to the current object.

Usage of Java this keyword

Here is given the 6 usage of java this keyword.

1. this can be used to refer current class instance variable.

2. this can be used to invoke current class method (implicitly)

3. this() can be used to invoke current class constructor.

4. this can be passed as an argument in the method call.

5. this can be passed as argument in the constructor call.

6. this can be used to return the current class instance from the method.

Example

Without using this keyword

class Student{

int rollno;

String name;

float fee;

Student(int rollno,String name,float fee){

rollno=rollno;

name=name;

fee=fee;

}

void display(){System.out.println(rollno+" "+name+" "+fee);}

}

class TestThis1{

public static void main(String args[]){

Student s1=new Student(111,"ankit",5000f);

Student s2=new Student(112,"sumit",6000f);

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 1 Page 6 of 11

s1.display();

s2.display();

}}

Output:

0 null 0.0

0 null 0.0

Using this keyword

class Student{

int rollno;

String name;

float fee;

Student(int rollno,String name,float fee){

this.rollno=rollno;

this.name=name;

this.fee=fee;

}

void display(){System.out.println(rollno+" "+name+" "+fee);}

}

class TestThis2{

public static void main(String args[]){

Student s1=new Student(111,"ankit",5000f);

Student s2=new Student(112,"sumit",6000f);

s1.display();

s2.display();

}}

 Output:

111 ankit 5000.0

112 sumit 6000.0

If local variables(formal arguments) and instance variables are different, there is no

need to use this keyword like in the following program:

Program where this keyword is not required

class Student{

int rollno;

String name;

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 1 Page 7 of 11

float fee;

Student(int r,String n,float f){

rollno=r;

name=n;

fee=f;

}

void display(){System.out.println(rollno+" "+name+" "+fee);}

}

class TestThis3{

public static void main(String args[]){

Student s1=new Student(111,"ankit",5000f);

Student s2=new Student(112,"sumit",6000f);

s1.display();

s2.display();

}}

 Output:

111 ankit 5000.0

112 sumit 6000.0

Copy Constructor

There is no copy constructor in Java. However, we can copy the values from one object

to another like copy constructor in C++.

There are many ways to copy the values of one object into another in Java. They are:

 By constructor

 By assigning the values of one object into another

 By clone() method of Object class

By Constructor

class Student6{

 int id;

 String name;

 Student6(int i,String n){

 id = i;

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 1 Page 8 of 11

 name = n;

 }

 //constructor to initialize another object

 Student6(Student6 s)

 {

 id = s.id;

 name =s.name;

 }

 void display(){System.out.println(id+" "+name);}

 public static void main(String args[]){

 Student6 s1 = new Student6(111,"Karan");

 Student6 s2 = new Student6(s1);

 s1.display();

 s2.display();

 }

}

Copying values without constructor

class Student7{

 int id;

 String name;

 Student7(int i,String n){

 id = i;

 name = n;

 }

 Student7(){}

 void display(){System.out.println(id+" "+name);}

 public static void main(String args[]){

 Student7 s1 = new Student7(111,"Karan");

 Student7 s2 = new Student7();

 s2.id=s1.id;

 s2.name=s1.name;

 s1.display();

111 Karan

 111 Karan

111 Karan

111 Karan

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 1 Page 9 of 11

 s2.display();

 }

}

Difference between constructor and method

Java Constructor Java Method

A constructor is used to initialize the state of
an object.

A method is used to expose the behavior of
an object.

A constructor must not have a return type. A method must have a return type.

The constructor is invoked implicitly. The method is invoked explicitly.

The Java compiler provides a default
constructor if you don't have any constructor
in a class.

The method is not provided by the
compiler in any case.

The constructor name must be same as the
class name.

The method name may or may not be same
as the class name.

Constructor overloading in Java

 It is a technique of having more than one constructor with different parameter

lists.

 They are arranged in a way that each constructor performs a different task.

 They are differentiated by the compiler by the number of parameters in the list

and their types.

Example

class Student5{

int id;

String name;

int age;

//creating two arg constructor

Student5(int i,String n){

id = i;

name = n;

}

//creating three arg constructor

Student5(int i,String n,int a){

id = i;

111 Karan 0

222 Aryan 25

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 1 Page 10 of 11

name = n;

age=a;

}

void display(){System.out.println(id+" "+name+" "+age);}

public static void main(String args[]){

Student5 s1 = new Student5(111,"Karan");

Student5 s2 = new Student5(222,"Aryan",25);

s1.display();

s2.display();

}

}

How Java Constructors are Different From Java Methods?

 Constructors must have the same name as the class within which it is defined

it is not necessary for the method in Java.

 Constructors do not return any type while method(s) have the return type

or void if does not return any value.

 Constructors are called only once at the time of Object creation while

method(s) can be called any number of times.

Garbage collection

 garbage means unreferenced objects.

 Garbage Collection is process of reclaiming the runtime unused memory

automatically. In other words, it is a way to destroy the unused objects.

To do so, we were using

 free() function in C language and

 delete() in C++.

 But, in java it is performed automatically. So, java provides better memory

management.

Advantage of Garbage Collection

 It makes java memory efficient because garbage collector removes the

unreferenced objects from heap memory.

 It is automatically done by the garbage collector (a part of JVM) so we don't

need to make extra efforts.

How can an object be unreferenced?

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 1 Page 11 of 11

There are many ways:

 By nulling the reference

 By assigning a reference to another

 By anonymous object etc.

By nulling a reference:

Employee e=new Employee();

e=null;

By assigning a reference to another:

Employee e1=new Employee();

Employee e2=new Employee();

e1=e2;//now the first object referred by e1 is available for garbage collection

By anonymous object:

new Employee();

finalize() method

The finalize() method is invoked each time before the object is garbage collected. This

method can be used to perform cleanup processing.

This method is defined in Object class as:

protected void finalize(){}

Note: The Garbage collector of JVM collects only those objects that are created by new

keyword. So if you have created any object without new, you can use finalize method to

perform cleanup processing (destroying remaining objects).

gc() method

The gc() method is used to invoke the garbage collector to perform cleanup processing.

The gc() is found in System and Runtime classes.

public static void gc(){}

Example

public class TestGarbage1{

 public void finalize(){System.out.println("object is garbage collected");}

 public static void main(String args[]){

 TestGarbage1 s1=new TestGarbage1();

 TestGarbage1 s2=new TestGarbage1();

 s1=null;

 s2=null;

 System.gc(); } }

object is garbage collected

object is garbage collected

