

UNIT 2 FOURIER SERIES ROOTMEAN SQUARE VALUE

Poot Mean Equare (RMS Value) or Effective Value.
Let
$$f(x)$$
 be a function defined in an interval
 (a,b) then $\int_{a}^{a} \frac{(4\pi)^{3}}{b^{-a}} is called as RMS value of f(x)$
It is denoted by \overline{Y} .
 $\overline{Y} = \int_{b-a}^{b} \frac{(4\pi)^{2}}{b^{-a}} ; \quad \overline{Y} = \frac{1}{b^{-a}} \int_{a}^{b} (4\pi)^{2} dx$
1. Fund the RMS value of $f(x) = x - x^{2}$ in -1 (x c)
 $\overline{Y}^{2} = \frac{1}{b^{-a}} \int_{a}^{b} (4\pi)^{2} dx = \frac{1}{2} \int_{a}^{b} (x^{2} + x^{4} - 2x^{3}) dx$
 $= \frac{1}{2} \int_{a}^{b} (x - x^{2})^{2} dx = \frac{1}{2} \int_{a}^{b} (x^{2} + x^{4} - 2x^{3}) dx$
 $= \frac{1}{2} \left[\frac{1}{2} + \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{2} \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + \frac{1}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + \frac{1}{3} - \frac{1}{3} - \frac{1}{3} \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right]$
 $= \frac{1}{2} \left[\frac{1}{2} + \frac{1}{3} - \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right]$
 $= \frac{1}{2} \left[\frac{1}{3} + \frac{1}{3} - \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right]$
 $= \frac{1}{2} \left[\frac{1}{3} + \frac{1}{3} - \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right]$
 $= \frac{1}{2} \left[\frac{1}{3} + \frac{1}{3} - \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} \right]$