		(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech&B.Tech.IT) COIMBATORE-641 035, TAMIL NADU	Y							
Reg. No: Image: Control of the second s										
B.E/B.Tech- Internal Assessment – II Academic Year 2024-2025 (ODD Semester) Fifth Semester Aerospace Engineering 19ASE304 – Heat Transfer Time: 1 ½ Hours Maximum Marks: 50										
		Answer All Questions		CO	Plaams					
					DIOUIIIS					
1.	Defi	ne forced convection.	ຸງ	CO2	Und					
2.	Circ	the manife of decorries can depend on	5:	CO2	Ana					
3.	Give	the merits of dropwise condensation.		CO3	Und					
4. 7	Wha	t is meant recuperators in radiation?		CO3	Rem					
5.	role	of emissivity in this process.		CO3	Ana					
PART – B (2*13=26 Marks) & (1*14=14 Marks)										
				CO	Blooms					
6.	(a)	A vertical plate of 0.75m height is at 170° C and is exposed to air at a temperature of 105° C and 1 atmosphere. Calculate (i) Mean heat transfer coefficient (ii) Rate of heat transfer per unit width of the plate.	13	CO2	App					
		(or)								
	(b)	Briefly explain in detail about the concept of Heat exchangers.	13	CO2	Rem					
7.	(a)	A block body at 3000K emits radiation. Calculate the following (i) Monochromatic emissive power at $1 \ge 10^{-6}$ m (ii) Wave length at which emission is maximum (iii) Maximum emissive power (iv)Total emissive power.	13	CO3	App					
		(or)								
	(b)	Find the shape factor F_{1-2} for the figure shown below.	13	CO3	Eva					

(a) In a case study give the implications of heat transfer on the performance of the thermal imaging camera and suggest design 14 CO2 Cre modifications to improve heat dissipation.

(or)

(b) An aerospace industrial facility uses large grey surfaces for its heating system, which involves radiative heat exchange between different surfaces. Define the concept of radiation heat exchange between grey 14 CO3 Cre surfaces and how it differs from black body radiation.

Bloom's Taxonomy:

REM – Remember **UND** – Understand **APP**– Apply **ANA**– Analyze **EVA** - Evaluate

CRT - Create

Faculty in-charge

Teaching Coordinator

HoD/Aerospace

		(An Autonomous Institution) (An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech&B.Tech.IT) COIMBATORE-641 035, TAMIL NADU	Y		TTUTIONS				
Reg. No: Reg. No: B.E/B.Tech- Internal Assessment – II Academic Year 2024-2025 (ODD Semester) Fifth Semester Aerospace Engineering 19ASE304 – Heat Transfer Time: 1 ½ Hours Maximum Marks: 50 Answer All Questions									
				CO	Blooms				
1.	Defi appli	ne the Logarithmic Mean Temperature Difference (LMTD) and its cation in heat exchangers.		CO2	Und				
2.	Why	overall heat transfer coefficient is important in heat transfer analysis?		CO2	Rem				
3.	What is the shape factor?		CO3	Rem					
4.	List	List out the electrical network analogy application in thermal radiation system		CO3	Und				
5.	5. Write down the Planck's Law equation of black body radiation.			CO3	App				
PART – B (2*13=26 Marks) & (1*14=14 Marks)									
				CO	Blooms				
6.	(a)	A plate of 6cm x 8cm x 14cm size maintained at temperature of 60° C and heat lost to the air at 0° C. The vertical dimension is 14cm. Determine heat transfer coefficient.	14	CO2	App				
(or)									
	(b)	A vertical plate of 0.7m wide and 1.2m height maintained at a temperature of 90° C in a room at 30° C. Calculate the convective heat loss.	13	CO2	App				
7.	(a)	Emissivities of two large parallel plates maintained at 800°C and 300°C are 0.3 and 0.5 respectively. Find net radiant heat exchange per square meter for these plates. Find the percentage reduction in heat transfer when a polish aluminium radiation shield of emissivity 0.06 is placed between them. Also find the temperature of the shield.	13	CO3	App				

(or)

(b) Find the shape factor F_{1-4} for the figure shown below.

13 CO3 Eva

8. (a) Imagine you are an engineer at a major aerospace company tasked with improving the thermal efficiency and lifespan of gas turbine blades used in jet engines. Analyze the advantages and disadvantages of each cooling method in terms of thermal efficiency, manufacturing complexity, and weight considerations.

(or)

(b) A researcher is studying the thermal radiation properties of a newly designed spacecraft. The spacecraft's surface is modeled as a black body to simplify calculations. Explain the concept of a black body and 14 CO3 Cre its significance in thermal radiation analysis.

Bloom's Taxonomy:

REM – Remember UND – Understand APP– Apply ANA– Analyze EVA - Evaluate CRT - Create

Faculty in-charge

Teaching Coordinator

HoD/Aerospace