

10/16/202

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35

An Autonomous Institution

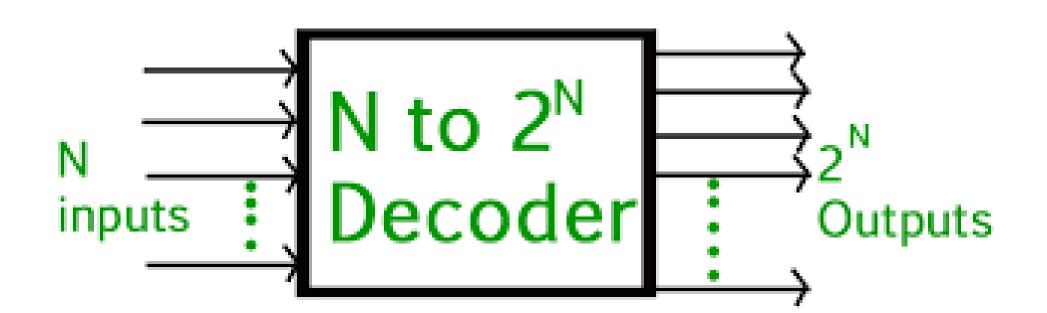
Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

23ECB222- Digital Principles and Computer Organization

II AIML / III SEMESTER

UNIT 2 – Combinational Circuits


Encoder and Decoder

WHAT IS A DECODER?

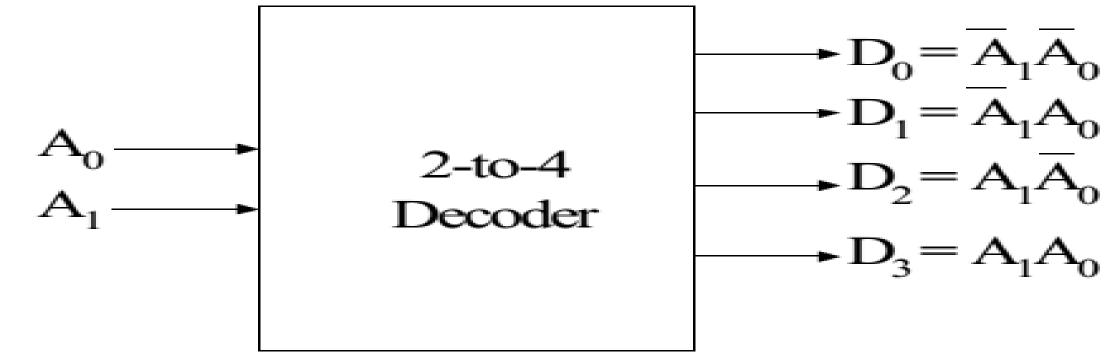
Decoder is a combinational logic circuit that converts binary information from the n coded inputs to a maximum of 2ⁿ unique outputs.

DECODER

A decoder has

- *n* inputs
- 2ⁿ outputs
 - A decoder selects one of 2ⁿ outputs by decoding the binary value on the *n* inputs.
 - The decoder generates all of the minterms of the *n* input variables.

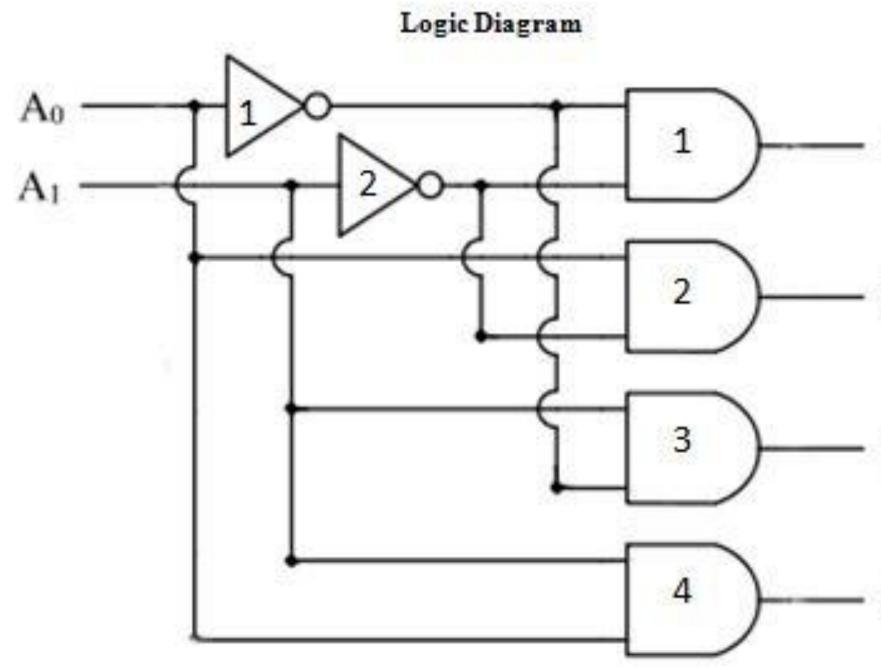
Exactly one output will be active for each combination of the inputs



What does "active" mean?

DECODER

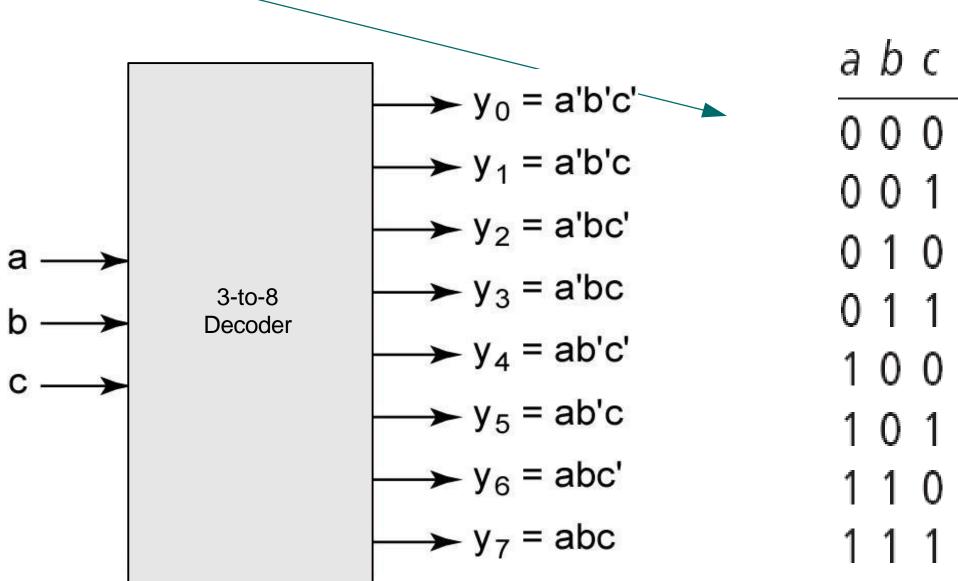
A 2-to-4 decoder without enable


Decimal #	Inj	put	Output				
	A_1	A_0	\mathbf{D}_{0}	$\mathbf{D_1}$	D_2	D_3	
0	0	0	1	0	0	0	
1	0	1	0	1	0	0	
2	1	0	0	0	1	0	
3	1	1	0	0	0	1	

Truth table for 2-to-4 decoder

DECODER

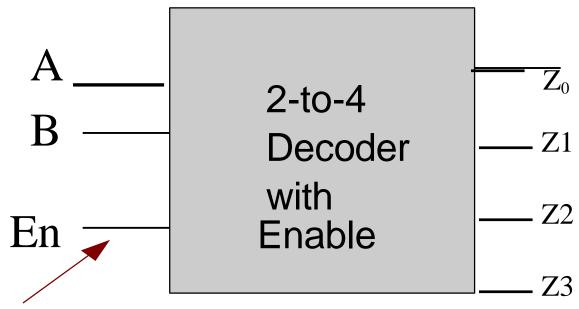
23ECB222- Digital Principles and Computer Organization/ Divya.M/ECE/SNSCT


		1	Truth	Tabl	le	
	A_1	A ₀	D_3	D ₂	D_1	D_0
D_0	0	0	0	0	0	1
	0	1	0	0	1	0
D	1	0	0	1	0	0
D_1	1	1	1	0	0	0

Equations D_2 $D_0 = \overline{A_1} \cdot \overline{A_0}$ $D_1=\overline{A_1}\boldsymbol{\cdot} A_0$ $D_2 = A_1 \cdot \overline{A_0}$ D_3

 $D_3 = A_1 \boldsymbol{\cdot} A_0$

DECODERS

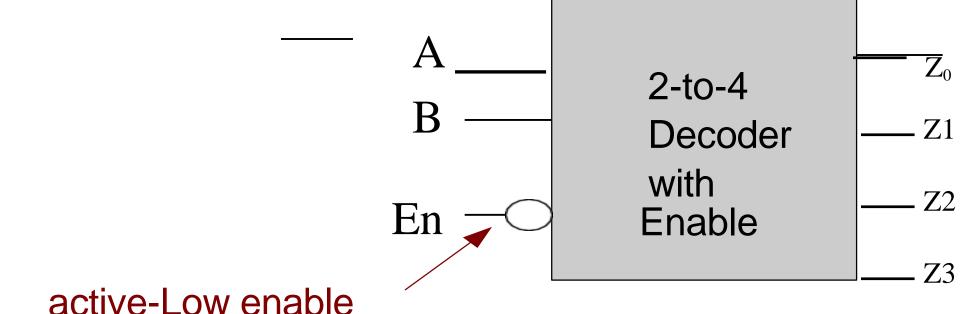

23ECB222- Digital Principles and Computer Organization/ Divya.M/ECE/SNSCT

*Y*₀ *Y*₁ *Y*₂ *Y*₃ *Y*₄ *Y*₅ *Y*₆ *Y*₇ 0 0 0 0 0 0 0 0 0

Decoder with Enable

active-high enable

	En	Α	В	Z_0	\mathbf{Z}_1	\mathbb{Z}_2	Z_3
	1	0	0	1	0	0	0
	1	0	1	0	1	0	0
	1	1	0	0	0	1	0
	1	1	1	0	0	0	1
	0	Х	X	0	0	0	0


disabled

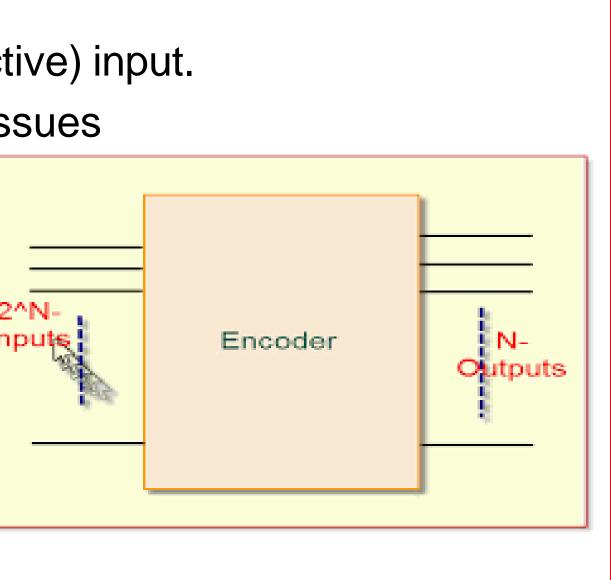
enabled

Decoder with Enable

active-Low enable

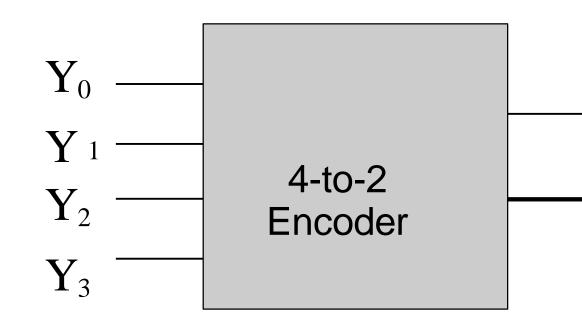
L. L	[En	Α	В	Z ₀	Z_1	Z_2	Z_3
		0	0	0	₈ 1	0	0	0
enabled		0	0	1	0	1	0	0
		0	1	0	0	0	1	0
		0	1	1	0	0	0	1
disabled		1	Х	Х	0	0	0	0

WHY ENCODERS?


An encoder has

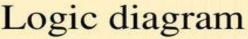
- 2ⁿ inputs
- *n* outputs

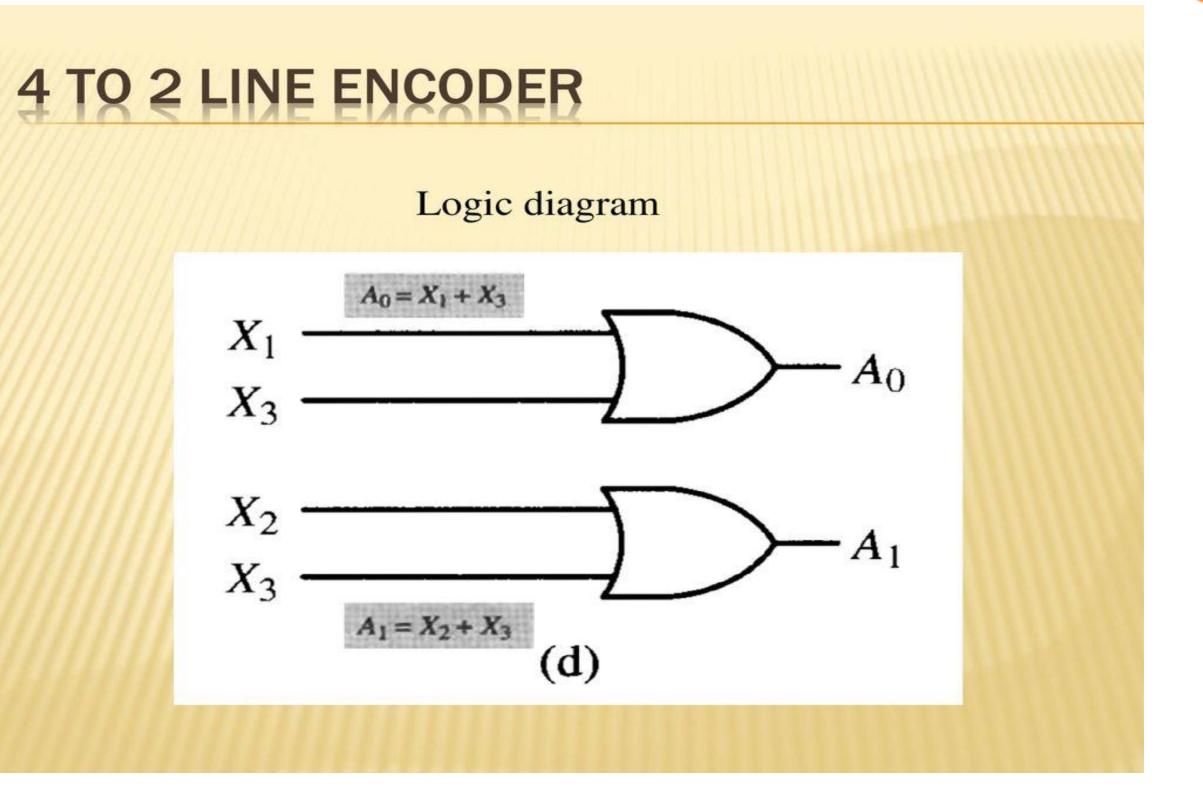
Outputs the binary value of the selected (or active) input. Performs the inverse operation of a decoder. Issues


- What if more than one input is active?
- What if no inputs are active?

Encoders

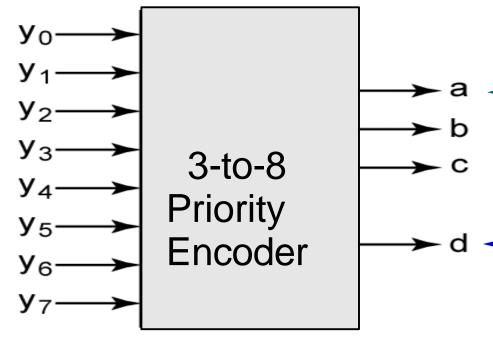
Y ₀	Y ₁	\mathbf{Y}_2	Y ₃	Α	В
1	0	0 10	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1


23ECB222- Digital Principles and Computer Organization/ Divya.M/ECE/SNSCT



A B

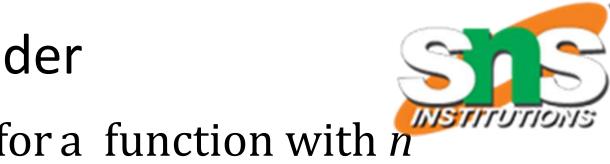
Encoders


Priority Encoders

- If more than one input is active, the higher-order input has priority over the lower-order input.
 - The higher value is encoded on the output A valid indicator, d, is included to indicate whether or not the output is valid. Output is invalid when no inputs are active • d = 012 Output is valid when at least one input is active
 - d = 1

Priority Encoders

			У	$4 \longrightarrow 5 \longrightarrow 6 \longrightarrow 6$] Pric	to-8 ority coder		➤ c ➤ d ◀			Valid bit
			У	7>	-						
Уo	y 1	y 2	уз	y 4	y 5	y 6	y 7	a	b	С	d
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1
X	1	0	0	0	0	0	0	0	0	1	1
X	Х	1	0	0	O ³	0	0	0	1	0	1
x	Х	Х	1	0	0	0	0	0	1	1	1
X	Х	X	Х	1	0	0	0	1	0	0	1
X	X	X	X	X	1	Ō	Ō	1	Ō	1	1
					X			1		Ō	1
X X	X X	X	X	X	X	x	1	1 1	1	1	1
	~	~	~	~	~	~			•	•	•


Using an *n*-output Decoder

14

Use an *n*-output decoder to realize a logic circuit for a function with \overline{n}

- minterms.
- Each minterm of the function can be mapped to an output of the decoder. For each row in the truth table, for the function, where the output is 1, sum (or "OR") the corresponding outputs of the decoder.

That is, for each minterm in the minterm expansion of the function, OR the corresponding outputs of the decoder. Leave remaining outputs of the decoder unconnected.

Using an *n*-output Decoder

Example

- Using a 3-to-8 decoder, design a logic circuit to realize the following Boolean function
- $F(A,B,C) = \square m(2, 3, 5, 6, 7)$

23ECB222- Digital Principles and Computer Organization/ Divya.M/ECE/SNSCT

15/18

Using an *n*-output Decoder

Example

• Using a 2-to-2 decoder, design a logic circuit to realize the following Boolean function

16

 $F(A,B,C) = \Sigma m(0, 1, 4, 6, 7)$

ASSESSMENT

- What is a Encoder? 1.
- 2. Device which converts an input device state into a binary representation of ones or zeros is termed as
 - 1. Encoder
 - 2. Decoder
 - 3. Multiplexer
 - 4. Data selector
- 3. A decoder converts n inputs to _____ outputs.(2ⁿ)
- ----- are building blocks of encoders.(Ans OR gate) 4.
- 5. Draw the block diagram of 2x4 decoder.

DECODER AND ENCODER /19ECB231-DIGITAL ELECTRONICS /Mrs. A.SAKIRA PARVEEN /AP/ECE/SNSCT

17

17/18

THANK YOU

