
23CSB201 & OBJECT ORIENTED PROGRAMMING

Dr.S.R.JANANI, AP/CSE/SNSCT Page 1

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

COIMBATORE – 35
DEPARTMENT OF COMPUTER SIENCE AND ENGINEERING

UNIT III – INHERITANCE AND POLYMORPHISM

Inheritance

Super class, Sub class

Types of inheritance

Method Overloading

Method Overriding

Abstract class

this keyword, Final keyword

Packages

Interfaces

Method Overriding in Java

 Method Overriding is a type of runtime polymorphism.

 In method overriding, a method in a derived class has the same name, return type, and

parameters as a method in its parent class.

 The derived class provides a specific implementation for the method that is already

defined in the parent class.

Example 1 of Method Overriding:

import java.io.*;

// Base Class

class Animal

{

 void eat()

 {

 System.out.println("eat() method of base class");

 System.out.println("Animal is eating.");

 }

}

// Derived Class

class Dog extends Animal

{

 @Override

 void eat()

23CSB201 & OBJECT ORIENTED PROGRAMMING

Dr.S.R.JANANI, AP/CSE/SNSCT Page 2

 {

 System.out.println("eat() method of derived class");

 System.out.println("Dog is eating.");

 }

 // Method to call the base class method

 void eatAsAnimal()

 {

 super.eat();

 }

}

// Driver Class

class MethodOverridingEx

{

 // Main Function

 public static void main(String args[])

 {

 Dog d1 = new Dog();

 Animal a1 = new Animal();

 d1.eat(); // Calls the eat() method of Dog class

 a1.eat(); // Calls the eat() method of Animal class

 // Polymorphism: Animal reference pointing to Dog object

 Animal animal = new Dog();

 animal.eat(); // Calls the eat() method of Dog class

((Dog) animal).eatAsAnimal(); // To call the base class method, you need to use a Dog

reference

 }

}

Output

eat() method of derived class

Dog is eating.

eat() method of base class

Animal is eating.

eat() method of derived class

Dog is eating.

eat() method of base class

Animal is eating.

23CSB201 & OBJECT ORIENTED PROGRAMMING

Dr.S.R.JANANI, AP/CSE/SNSCT Page 3

Explanation of the above Program:

Here, we can see that a method eat() has overridden in the derived class name Dog that is

already provided by the base class name Animal. When we create the instance of class Dog and

call the eat() method, we see that only derived class eat() method run instead of base class

method eat(), and When we create the instance of class Animal and call the eat() method, we

see that only base class eat() method run instead of derived class method eat().

Example 2 of method overriding
In this example, we have defined the run method in the subclass as defined in the parent class

but it has some specific implementation. The name and parameter of the method are the same,

and there is IS-A relationship between the classes, so there is method overriding.

//Java Program to illustrate the use of Java Method Overriding

//Creating a parent class.

class Vehicle

{

 //defining a method

 void run()

{System.out.println("Vehicle is running");}

}

//Creating a child class

class Bike2 extends Vehicle

{

 //defining the same method as in the parent class

 void run()

{System.out.println("Bike is running safely");}

 public static void main(String args[]){

 Bike2 obj = new Bike2();//creating object

 obj.run();//calling method

 }

}

Output:

Bike is running safely

23CSB201 & OBJECT ORIENTED PROGRAMMING

Dr.S.R.JANANI, AP/CSE/SNSCT Page 4

Example 3 of Java Method Overriding

Consider a scenario where Bank is a class that provides functionality to get the rate of

interest. However, the rate of interest varies according to banks. For example, SBI, ICICI

and AXIS banks could provide 8%, 7%, and 9% rate of interest.

Java method overriding is mostly used in Runtime Polymorphism
which we will learn in next pages.

//Java Program to demonstrate the real scenario of Java Method Overriding

//where three classes are overriding the method of a parent class.

//Creating a parent class.

class Bank

{

int getRateOfInterest()

{

return 0;

}

}

//Creating child classes.

class SBI extends Bank

{

int getRateOfInterest()

{return 8;}

23CSB201 & OBJECT ORIENTED PROGRAMMING

Dr.S.R.JANANI, AP/CSE/SNSCT Page 5

}

class ICICI extends Bank

{

int getRateOfInterest()

{return 7;}

}

class AXIS extends Bank

{

int getRateOfInterest()

{return 9;}

}

//Test class to create objects and call the methods

class Test2

{

public static void main(String args[])

{

SBI s=new SBI();

ICICI i=new ICICI();

AXIS a=new AXIS();

System.out.println("SBI Rate of Interest: "+s.getRateOfInterest());

System.out.println("ICICI Rate of Interest: "+i.getRateOfInterest());

System.out.println("AXIS Rate of Interest: "+a.getRateOfInterest());

}

}

Output:

SBI Rate of Interest: 8

ICICI Rate of Interest: 7

AXIS Rate of Interest: 9

23CSB201 & OBJECT ORIENTED PROGRAMMING

Dr.S.R.JANANI, AP/CSE/SNSCT Page 6

Can we override static method?

No, a static method cannot be overridden. It can be proved by runtime polymorphism,

so we will learn it later.

Why can we not override static method?

It is because the static method is bound with class whereas instance method is bound

with an object. Static belongs to the class area, and an instance belongs to the heap

area.

Can we override java main method?

No, because the main is a static method.

23CSB201 & OBJECT ORIENTED PROGRAMMING

Dr.S.R.JANANI, AP/CSE/SNSCT Page 7

The differences between Method Overloading and Method Overriding in Java are as follows:

Method Overloading Method Overriding

Method overloading is a compile-time

polymorphism.

Method overriding is a run-time polymorphism.

Method overloading helps to increase the

readability of the program.

Method overriding is used to grant the specific

implementation of the method which is already

provided by its parent class or superclass.

It occurs within the class. It is performed in two classes with inheritance

relationships.

Method overloading may or may not

require inheritance.

Method overriding always needs inheritance.

In method overloading, methods must have

the same name and different signatures.

In method overriding, methods must have the same

name and same signature.

In method overloading, the return type can

or can not be the same, but we just have to

change the parameter.

In method overriding, the return type must be the

same or co-variant.

Static binding is being used for overloaded

methods.

Dynamic binding is being used for overriding

methods.

Private and final methods can be

overloaded.

Private and final methods can’t be overridden.

The argument list should be different while

doing method overloading.

The argument list should be the same in method

overriding.

	Method Overriding in Java
	Example 1 of Method Overriding:
	Example 2 of method overriding
	Example 3 of Java Method Overriding
	Java method overriding is mostly used in Runtime Polymorphism which we will learn in next pages.

	Can we override static method?
	Why can we not override static method?
	Can we override java main method?

