

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE - 35

UNIT 4 Fourier Transforms Statement of Fourier Integral Theorem

Fourier Transform Pais:
The fourier transform of
$$f(x)$$
 is quien by
 $F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{isx} dx^{nn} \rightarrow 0$ complex former transform
 $e^{isx} = cossx + iscnsx$
Then the function $f(x)$ is the inverse Fourier transform
of $f(x)$
 $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(s) e^{isx} ds \rightarrow 0$.
The above eqns 0 and 2 are jointly called Fourier
 $Transform pala$,
 $f(x) = F'[F(s)] = F'[F[f(x)]]$