

UNIT 5 Z - Transforms and Difference equations Convolution Theorem

If Z[f(n)] = f(z), then f(n) is called the Inverse z-transform! inverse X-transform of F(Z) and 9s denoted by f(n) = Z-1 \ F(z) If F(z) and G(z) are the z-transforms of Convolution Theorem! fin) and gin) suspectively then Z \ f(n) * g(n) \ = F(z) G(z) where f(n) * g(n) is defined as the complution of fin) and qui) given by $f(n) * g(n) = \sum_{k=0}^{n} f(k) g(n-k)$ Proof:
We have $F(z)G(z) = \begin{bmatrix} \infty & f(n) & \overline{z} \end{bmatrix} \begin{bmatrix} \infty & g(n) & \overline{z} \end{bmatrix}$ $F(z)G(z) = [f(0) + f(1)z^{-1} + ... + f(n)z^{-n} + ...]$ [gros) + grosz + ... + grosz] = E [flo)gen) + flo)gen-1)+... +. fln)geo)] z^ = $\frac{8}{5}$ $A_n z^n$ An = f(0)g(n) + ... + f(n)g(0) Where $= \sum_{k=1}^{\infty} f(k) g(n-k) = f(n) k g(n)$

UNIT 5 Z - Transforms and Difference equations Convolution Theorem

$$F(z) G(z) = \sum_{n=0}^{\infty} A_n z^n$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{K} n \right) * g(n) z^n$$

$$F(z) G(z) = Z \left[\frac{1}{K} n \right] * g(n) z^n$$
Inverse z -transform using convolution theorem.

1. Using convolution theorem, find $z^n \left[\frac{z}{2-a} \right] = z^n$

$$|and z| = \frac{z}{z-a} \Rightarrow z^n \left[\frac{z}{z-a} \right] = a^n$$

$$|and z| = \frac{z}{z-a} \text{ and } G(z) = \frac{z}{z-b}$$

$$|and z| = z^n \left[\frac{z}{z-a} \right] * z^n \left[\frac{z}{z-b} \right]$$

$$= z^n \left[\frac{z}{z-a} \right] * z^n \left[\frac{z}{z-b} \right]$$

$$= z^n \left[\frac{z}{z-a} \right] * z^n \left[\frac{z}{z-b} \right]$$

$$= \sum_{k=0}^{\infty} a^k b^{n-k}$$

$$= \sum_{k=0}^{\infty} a^k b^{n-k}$$

$$= b^n \sum_{k=0}^{\infty} a^{n-k} b^{n-k}$$

$$= b^n \sum_{k=0}^{\infty} a^{n-k} b^{n-k}$$

$$= a^{n-k} b^{n-k}$$

$$= a^{n-k} b^{n-k}$$

UNIT 5 Z - Transforms and Difference equations Convolution Theorem

Brothems On convolution

3. find the z-transform of f(n) * g(n) where $f(n) = \left(\frac{1}{2}\right)^n$ and $g(n) = cosn\pi$ using computation theorem.

By convolution theorem,

$$Z[f(n)*g(n)] = Z[f(n)-Z[g(n)] \rightarrow 0$$

$$Z[f(n)] = Z[(\frac{1}{2})^n] = \frac{Z}{Z-\frac{1}{2}} = \frac{2Z}{2Z-1}$$

and
$$Z[g(n)] = Z[cosn \pi]$$

= $Z[(-1)^n] = \frac{Z}{Z-(-1)} = \frac{Z}{Z+1}$

$$= \frac{2z^2}{(2z-1)(z+1)}$$

4. Using Convolution theorem, find $z^{-1}\left(\frac{z^2}{(z-1)(z-3)}\right)$

UNIT 5 Z - Transforms and Difference equations Convolution Theorem

$$= \frac{3^{n+1} - 1}{3^{-1}}$$

$$= \frac{3^{n+1} - 1}{3}$$

$$= \frac{3^{n+1} - 1}{3^{n+1} - 1}$$

$$= \frac{3^{n+1} - 1}{3^$$

UNIT 5 Z - Transforms and Difference equations Convolution Theorem

6. Using Convolution theorem, find
$$z^{-1} \left[\frac{z^{2}}{(z-4)(z-3)} \right] = z^{-1} \left[\frac{z}{z-4} \cdot \frac{z}{z-3} \right]$$

$$= z^{-1} \left[\frac{z^{2}}{(z-4)(z-3)} \right] = z^{-1} \left[\frac{z}{z-4} \cdot \frac{z}{z-3} \right]$$

$$= z^{-1} \left[\frac{z}{z-4} \right] * z^{-1} \left[\frac{z}{z-3} \right]$$

$$= z^{-1} \left[\frac{z}{z-4} \right] * z^{-1} \left[\frac{z}{z-3} \right]$$

$$= z^{-1} \left[\frac{z}{z-4} \right] * z^{-1} \left[\frac{z}{z-3} \right]$$

$$= z^{-1} \left[\frac{z}{z-4} \right] * z^{-1} \left[\frac{z}{z-4} \right] * z^{-1} \left[\frac{z}{z-4} \right]$$

$$= z^{-1} \left[\frac{z}{z-4} \right] * z^{-1} \left[\frac{z}{z-4} \right] * z^{-1} \left[\frac{z}{z-4} \right]$$

$$= z^{-1} \left[\frac{z}{z-4} \right] * z^{-1} \left[\frac{z}{z-4} \right] * z^{-1} \left[\frac{z}{z-4} \right]$$

$$= z^{-1} \left[\frac{z}{z-4} \right] * z^{-1} \left[\frac{z}{z-4} \right] * z^{-1} \left[\frac{z}{z-4} \right] * z^{-1} \left[\frac{z}{z-4} \right]$$

$$= z^{-1} \left[\frac{z}{z-4} \right] * z^{-1} \left[\frac{z}{z-4}$$