
Classical Planning

Planning Domain Definition Language (PDDL)

In propositional logic-based planning we have seen the combinatorial explosion problem that

results from the need to include in the reasoning / inference step all possible states and

actions combinations over time. To avoid such explosion, with obvious benefits to the

planning efficiency, we introduce a language called Planning Domain Definition Language

(PDDL) that allows for compressive expressiveness at the action space via action schemas as

we will see shortly. PDDL is positioned at the input of the domain independent planner as

shown in the figure below.

Planning System: A domain-independent solver or planner takes two inputs: 1) the

domain model written in a planning language and 2) a problem definition that

describes the initial state i and the desired goal state g using the domain model’s

terminology; and produces as output a plan, that is, a sequence of actions that takes

the agent from the initial state to the goal state.

PDDL expresses the four things we need to plan a sequence of actions. The set of all

predicates and action schemas are defined in the domain file (domain.pddl) as

shown next.

Domain

Syntax
Description

Types
A description of the possible types of objects in the world. A type can inherit

from another type.

Constants
The set of constants, which are objects which appear in all problem instances of

this domain.

Domain

Syntax
Description

Predicates

A predicate is the part of a sentence or clause containing a verb and stating

something about the subject. Each predicate is described by a name and a

signature, consisting of an ordered list of types. Properties of the objects

(contained in the problem specification) we are interested in. Each property

evaluates to TRUE or FALSE. The domain also describes a set of derived

predicates, which are predicates associated with a logical expression. The value

of each derived predicate is computed automatically by evaluating the logical

expression associated with it.

Actions /

Operators

Actions are described by action schemas that effectively define the functions

needed to do problem-solving search. The schema consist of the name, the

signature or the list of all the boolean variables that are ground and

functionless, a precondition and effect. The signature is now an ordered list of

named parameters, each with a type.

The precondition is a logical formula, whose basic building blocks are the

above mentioned predicates, combined using the standard first order logic

logical connectives. The predicates can only be parametrized by the operator

parameters, the domain constraints, or, if they appear within the scope of a

forall or exists statement, by the variable introduced by the quantifier.

 The effect is similar, except that it described a partial assignment, rather than a

formula, and thus can not contain any disjunctions.

For the famous Blocks world shown below where a robotic arm must reason to stack blocks

according what the goal is, we list the corresponding domain PDDL specification.

In natural language, the rules are:

• Blocks are picked up and put down by the arm

• Blocks can be picked up only if they are clear, i.e., without any block on top

• The arm can pick up a block only if the arm is empty, i.e., if it is not holding

another block, i.e., the arm can be pick up only one block at a time

• The arm can put down blocks on blocks or on the table

Proble

m

Synta

x

Description

Initial

State

Each state is represented as conjunction of ground boolean variables. For

example,

$On(Box1,Table2)∧On(Box2,Table2)isastateexpression.\mathtt{Box_1}isdistinct

than\mathtt{Box_2}$. All fluents that are not specified are assumed to be

FALSE.

Goal
All things we want to be TRUE. The goal is like a precondition - a conjunction

of literals that may contain variables.

