
AVL TREES

AVL tree is a self – balancing binary search tree where the difference between

the height of left subtree and right sub tree is -1,0 or 1.

In other words, AVL tree is defined as a balanced binary search tree whose

balancing factor is -1,0 or 1. Balancing factor is defined by the difference in

height of left sub tree and right sub tree. The tree is named after the investors

Adelson, Velski and Landis.

NEED FOR AVL TREE

Consider the following AVL tree

The height of the tree grows linearly in size when we insert the keys in increasing

order of their value. Thus, the search operation, at worst, takes O(n).

It takes linear time to search for an element; hence there is no use of using the

Binary Search Tree structure. On the other hand, if the height of the tree is

balanced, we get better searching time.

AVL tree – example

On the other hand, the following is an AVL tree.

Here, the keys are the same, but since they are inserted in a different order, they

take different positions, and the height of the tree remains balanced. Hence search

will not take more than O(log n) for any element of the tree. It is now evident that

if insertion is done correctly, the tree’s height can be kept balanced.

In AVL trees, we keep a check on the height of the tree during insertion operation.

Modifications are made to maintain the balanced height without violating the

fundamental properties of Binary Search Tree.

BALANCING FACTOR IN AVL TREES

Properties of balancing factor

 The balance factor is known as the difference between the height of the left

subtree and the right subtree.

 Balance factor(node) = height(node->left) – height(node->right)

 Allowed values of BF are –1, 0, and +1.

 The value –1 indicates that the right sub-tree contains one extra, i.e., the

tree is right heavy.

 The value +1 indicates that the left sub-tree contains one extra, i.e., the tree

is left heavy.

 The value 0 shows that the tree includes equal nodes on each side, i.e., the

tree is perfectly balanced.

AVL Rotations

To balance itself, an AVL tree may perform the following four kinds of rotations

−

 Left rotation

 Right rotation

 Left-Right rotation

 Right-Left rotation

The first two rotations are single rotations and the next two rotations are double

rotations. To have an unbalanced tree, we at least need a tree of height 2. With

this simple tree, let's understand them one by one.

Left Rotation

If a tree becomes unbalanced, when a node is inserted into the right subtree of the

right subtree, then we perform a single left rotation −

In our example, node A has become unbalanced as a node is inserted in the right

subtree of A's right subtree. We perform the left rotation by making A the left-

subtree of B.

Right Rotation

AVL tree may become unbalanced, if a node is inserted in the left subtree of the

left subtree. The tree then needs a right rotation.

As depicted, the unbalanced node becomes the right child of its left child by

performing a right rotation.

Left-Right Rotation

Double rotations are slightly complex version of already explained versions of

rotations. To understand them better, we should take note of each action

performed while rotation. Let's first check how to perform Left-Right rotation. A

left-right rotation is a combination of left rotation followed by right rotation.

State Action

A node has been inserted into the right subtree of the left

subtree. This makes C an unbalanced node. These scenarios

cause AVL tree to perform left-right rotation.

We first perform the left rotation on the left subtree of C. This

makes A, the left subtree of B.

Node C is still unbalanced, however now, it is because of the

left-subtree of the left-subtree.

We shall now right-rotate the tree, making B the new root

node of this subtree. C now becomes the right subtree of its

own left subtree.

The tree is now balanced.

Right-Left Rotation

The second type of double rotation is Right-Left Rotation. It is a combination of

right rotation followed by left rotation.

State Action

A node has been inserted into the left subtree of the right

subtree. This makes A, an unbalanced node with balance

factor 2.

First, we perform the right rotation along C node,

making C the right subtree of its own left subtree B.

Now, B becomes the right subtree of A.

Node A is still unbalanced because of the right subtree of its

right subtree and requires a left rotation.

A left rotation is performed by making B the new root node

of the subtree. A becomes the left subtree of its right

subtree B.

The tree is now balanced.

Insertion in AVL Trees

Insert operation is almost the same as in simple binary search trees. After every

insertion, we balance the height of the tree.

Step 1: Insert the node in the AVL tree using the same insertion algorithm of

BST. In the above example, insert 160.

Step 2: Once the node is added, the balance factor of each node is updated. After

160 is inserted, the balance factor of every node is updated.

Step 3: Now check if any node violates the range of the balance factor if the

balance factor is violated, then perform rotations using the below case. In the

above example, the balance factor of 350 is violated and case 1 becomes

applicable there, we perform LL rotation and the tree is balanced again.

1. If BF(node) = +2 and BF(node -> left-child) = +1, perform LL rotation.

2. If BF(node) = -2 and BF(node -> right-child) = 1, perform RR rotation.

3. If BF(node) = -2 and BF(node -> right-child) = +1, perform RL rotation.

4. If BF(node) = +2 and BF(node -> left-child) = -1, perform LR rotation.

Deletion in AVL Trees

Deletion is also very straight forward. We delete using the same logic as in simple

binary search trees. After deletion, we restructure the tree, if needed, to maintain

its balanced height.

Step 1: Find the element in the tree.

Step 2: Delete the node, as per the BST Deletion.

Step 3: Two cases are possible:-

Case 1: Deleting from the right subtree.

 1A. If BF(node) = +2 and BF(node -> left-child) = +1, perform LL rotation.

 1B. If BF(node) = +2 and BF(node -> left-child) = -1, perform LR rotation.

 1C. If BF(node) = +2 and BF(node -> left-child) = 0, perform LL rotation.

Case 2: Deleting from left subtree.

 2A. If BF(node) = -2 and BF(node -> right-child) = -1, perform RR

rotation.

 2B. If BF(node) = -2 and BF(node -> right-child) = +1, perform RL

rotation.

 2C. If BF(node) = -2 and BF(node -> right-child) = 0, perform RR rotation.

PSEUDOCODE FOR AVL ROTATIONS

Left rotation

struct node * llrotation(struct node *n){

 struct node *p;

 struct node *tp;

 p = n;

 tp = p->left;

 p->left = tp->right;

 tp->right = p;

 return tp;

 }

Right rotation

 struct node * rrrotation(struct node *n){

 struct node *p;

 struct node *tp;

 p = n;

 tp = p->right;

 p->right = tp->left;

 tp->left = p;

 return tp;

 }

Right – left rotation

struct node * rlrotation(struct node *n){

 struct node *p;

 struct node *tp;

 struct node *tp2;

 p = n;

 tp = p->right;

 tp2 =p->right->left;

 p -> right = tp2->left;

 tp ->left = tp2->right;

 tp2 ->left = p;

 tp2->right = tp;

 return tp2;

 }

Left – right rotation

 struct node * lrrotation(struct node *n){

 struct node *p;

 struct node *tp;

 struct node *tp2;

 p = n;

 tp = p->left;

 tp2 =p->left->right;

 p -> left = tp2->right;

 tp ->right = tp2->left;

 tp2 ->right = p;

 tp2->left = tp;

 return tp2;

 }

AVL TREES

AVL tree is a self – balancing binary search tree where the difference between

the height of left subtree and right sub tree is -1,0 or 1.

In other words, AVL tree is defined as a balanced binary search tree whose

balancing factor is -1,0 or 1. Balancing factor is defined by the difference in

height of left sub tree and right sub tree. The tree is named after the investors

Adelson, Velski and Landis.

NEED FOR AVL TREE

Consider the following AVL tree

The height of the tree grows linearly in size when we insert the keys in increasing

order of their value. Thus, the search operation, at worst, takes O(n).

It takes linear time to search for an element; hence there is no use of using the

Binary Search Tree structure. On the other hand, if the height of the tree is

balanced, we get better searching time.

AVL tree – example

On the other hand, the following is an AVL tree.

Here, the keys are the same, but since they are inserted in a different order, they

take different positions, and the height of the tree remains balanced. Hence search

will not take more than O(log n) for any element of the tree. It is now evident that

if insertion is done correctly, the tree’s height can be kept balanced.

In AVL trees, we keep a check on the height of the tree during insertion operation.

Modifications are made to maintain the balanced height without violating the

fundamental properties of Binary Search Tree.

BALANCING FACTOR IN AVL TREES

Properties of balancing factor

 The balance factor is known as the difference between the height of the left

subtree and the right subtree.

 Balance factor(node) = height(node->left) – height(node->right)

 Allowed values of BF are –1, 0, and +1.

 The value –1 indicates that the right sub-tree contains one extra, i.e., the

tree is right heavy.

 The value +1 indicates that the left sub-tree contains one extra, i.e., the tree

is left heavy.

 The value 0 shows that the tree includes equal nodes on each side, i.e., the

tree is perfectly balanced.

AVL Rotations

To balance itself, an AVL tree may perform the following four kinds of rotations

−

 Left rotation

 Right rotation

 Left-Right rotation

 Right-Left rotation

The first two rotations are single rotations and the next two rotations are double

rotations. To have an unbalanced tree, we at least need a tree of height 2. With

this simple tree, let's understand them one by one.

Left Rotation

If a tree becomes unbalanced, when a node is inserted into the right subtree of the

right subtree, then we perform a single left rotation −

In our example, node A has become unbalanced as a node is inserted in the right

subtree of A's right subtree. We perform the left rotation by making A the left-

subtree of B.

Right Rotation

AVL tree may become unbalanced, if a node is inserted in the left subtree of the

left subtree. The tree then needs a right rotation.

As depicted, the unbalanced node becomes the right child of its left child by

performing a right rotation.

Left-Right Rotation

Double rotations are slightly complex version of already explained versions of

rotations. To understand them better, we should take note of each action

performed while rotation. Let's first check how to perform Left-Right rotation. A

left-right rotation is a combination of left rotation followed by right rotation.

State Action

A node has been inserted into the right subtree of the left

subtree. This makes C an unbalanced node. These scenarios

cause AVL tree to perform left-right rotation.

We first perform the left rotation on the left subtree of C. This

makes A, the left subtree of B.

Node C is still unbalanced, however now, it is because of the

left-subtree of the left-subtree.

We shall now right-rotate the tree, making B the new root

node of this subtree. C now becomes the right subtree of its

own left subtree.

The tree is now balanced.

Right-Left Rotation

The second type of double rotation is Right-Left Rotation. It is a combination of

right rotation followed by left rotation.

State Action

A node has been inserted into the left subtree of the right

subtree. This makes A, an unbalanced node with balance

factor 2.

First, we perform the right rotation along C node,

making C the right subtree of its own left subtree B.

Now, B becomes the right subtree of A.

Node A is still unbalanced because of the right subtree of its

right subtree and requires a left rotation.

A left rotation is performed by making B the new root node

of the subtree. A becomes the left subtree of its right

subtree B.

The tree is now balanced.

Insertion in AVL Trees

Insert operation is almost the same as in simple binary search trees. After every

insertion, we balance the height of the tree.

Step 1: Insert the node in the AVL tree using the same insertion algorithm of

BST. In the above example, insert 160.

Step 2: Once the node is added, the balance factor of each node is updated. After

160 is inserted, the balance factor of every node is updated.

Step 3: Now check if any node violates the range of the balance factor if the

balance factor is violated, then perform rotations using the below case. In the

above example, the balance factor of 350 is violated and case 1 becomes

applicable there, we perform LL rotation and the tree is balanced again.

5. If BF(node) = +2 and BF(node -> left-child) = +1, perform LL rotation.

6. If BF(node) = -2 and BF(node -> right-child) = 1, perform RR rotation.

7. If BF(node) = -2 and BF(node -> right-child) = +1, perform RL rotation.

8. If BF(node) = +2 and BF(node -> left-child) = -1, perform LR rotation.

Deletion in AVL Trees

Deletion is also very straight forward. We delete using the same logic as in simple

binary search trees. After deletion, we restructure the tree, if needed, to maintain

its balanced height.

Step 1: Find the element in the tree.

Step 2: Delete the node, as per the BST Deletion.

Step 3: Two cases are possible:-

Case 1: Deleting from the right subtree.

 1A. If BF(node) = +2 and BF(node -> left-child) = +1, perform LL rotation.

 1B. If BF(node) = +2 and BF(node -> left-child) = -1, perform LR rotation.

 1C. If BF(node) = +2 and BF(node -> left-child) = 0, perform LL rotation.

Case 2: Deleting from left subtree.

 2A. If BF(node) = -2 and BF(node -> right-child) = -1, perform RR

rotation.

 2B. If BF(node) = -2 and BF(node -> right-child) = +1, perform RL

rotation.

 2C. If BF(node) = -2 and BF(node -> right-child) = 0, perform RR rotation.

PSEUDOCODE FOR AVL ROTATIONS

Left rotation

struct node * llrotation(struct node *n){

 struct node *p;

 struct node *tp;

 p = n;

 tp = p->left;

 p->left = tp->right;

 tp->right = p;

 return tp;

 }

Right rotation

 struct node * rrrotation(struct node *n){

 struct node *p;

 struct node *tp;

 p = n;

 tp = p->right;

 p->right = tp->left;

 tp->left = p;

 return tp;

 }

Right – left rotation

struct node * rlrotation(struct node *n){

 struct node *p;

 struct node *tp;

 struct node *tp2;

 p = n;

 tp = p->right;

 tp2 =p->right->left;

 p -> right = tp2->left;

 tp ->left = tp2->right;

 tp2 ->left = p;

 tp2->right = tp;

 return tp2;

 }

Left – right rotation

 struct node * lrrotation(struct node *n){

 struct node *p;

 struct node *tp;

 struct node *tp2;

 p = n;

 tp = p->left;

 tp2 =p->left->right;

 p -> left = tp2->right;

 tp ->right = tp2->left;

 tp2 ->right = p;

 tp2->left = tp;

 return tp2;

 }

