
Separating Programming and
Presentation:

JSP Technology

CSI 3140

WWW Structures, Techniques and Standards

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Why JSP?

Servlet/CGI approach: server-side code is a
program with HTML embedded

JavaServer Pages (and
PHP/ASP/ColdFusion) approach: server-side
“code” is a document with program embedded

 Supports cleaner separation of program logic
from presentation

 Facilitates division of labor between developers
and designers

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Default namespace is XHTML

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Also uses two

JSP-defined

namespaces

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

JSP-defined

markup (initialization)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Standard XHTML

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

JSP

scriptlet

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

JSP-based program logic:

initialize and increment variable

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Replaced with value of variable

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Output

XHTML

document

after 3 visits

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Used html as root element

 Can use HTML-generating tools, such as

Mozilla Composer, to create the HTML portions

of the document

 JSP can generate other XML document types as

well

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Namespaces

 JSP (basic elements, normal prefix jsp)

 Core JSP Standard Tag Library (JSTL)

(prefix c)

 Tag library: means of adding functionality beyond

basic JSP

 JSTL included in with JWSDP 1.3 version of Tomcat

 JSTL provides tag libraries in addition to core (more

later)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

JSP elements

 directive.page: typical use to set HTTP

response header field, as shown (default is

text/xml)

 output: similar to XSLT output element

(controls XML and document type declarations)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Template data: Like XSLT, this is the HTML

and character data portion of the document

Scriptlet: Java code embedded in document

 While often used in older (non-XML) JSP pages,

we will avoid scriptlet use

 One use (shown here) is to add comments that

will not be output to the generated page

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

Core tag library supports simple

programming

 if: conditional

 empty: true if variable is non-existent or undefined

 set: assignment

 application scope means that the variable is accessible

by other JSP documents, other users (sessions)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP and Servlets

JSP documents are not executed directly

 When a JSP document is first visited, Tomcat

1. Translates the JSP document to a servlet

2. Compiles the servlet

 The servlet is executed

Exceptions provide traceback information
for the servlet, not the JSP

 The servlets are stored under Tomcat work
directory

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP and Servlets

A JSP-generated servlet has a

_jspService() method rather than

doGet() or doPost()

 This method begins by automatically creating a

number of implicit object variables that can be

accessed by scriptlets

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP and Servlets

Translating template data:

Scriptlets are copied as-is to servlet:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP and Servlets

Scriptlets can be written to use the implicit
Java objects:

We will avoid this because:

 It defeats the separation purpose of JSP

 We can incorporate Java more cleanly using
JavaBeans technology and tag libraries

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP and Servlets

JSP elements translate to:

${visits} in template code translates to

out.write() of value of variable

Core tags (e.g., if) normally translate to a

method call

JSP default

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

A web application is a collection of resources

that are used together to implement some web-

based functionality

Resources include

 Components: servlets (including JSP-generated)

 Other resources: HTML documents, style sheets,

JavaScript, images, non-servlet Java classes, etc.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Sharing data between components of a web
application

 Tomcat creates one ServletContext object
per web application

 Call to getServletContext() method of a
servlet returns the associated
ServletContext

 ServletContext supports
setAttribute()/getAttribute()
methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Within Tomcat, all of the files of a simple

web app are placed in a directory under

webapps

 JSP documents can go in the directory itself

 “Hidden” files--such as servlet class files--go

under a WEB-INF subdirectory (more later)

Once the web app files are all installed, use

Tomcat Manager to deploy the app

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Deploying a web app consisting of a single JSP

document HelloCounter.jspx:

 Create directory webapps/HelloCounter

 Copy JSP doc to this directory

 Visit localhost:8080/manager/html

 Enter HelloCounter in “WAR or Directory URL”

box and click Deploy button

Web app is now at URL

localhost:8080/HelloCounter/

HelloCounter.jspx

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Manager app:

 Stop: web app becomes unavailable (404

returned)

 Start: web app becomes available again

 Reload: stop web app, restart with latest versions

of files (no need to restart server)

 Undeploy: stop app and remove all files!

 Always keep a copy of app outside webapps

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Set parameters of a web application by

 Creating a deployment descriptor (XML file)

 Saving the descriptor as WEB-INF/web.xml

Simple example web.xml:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Some examples:

 Setting an initial value accessible by

application.getInitParameter():

 Setting the length of time (in minutes) before a

session times out:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Mapping URLs to app components:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

There are four URL patterns (from high to

low precedence)

If no URL pattern matches, Tomcat treats

path as a relative file name

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

Methods on request object for obtaining

path information:

 Example:

/HelloCounter/visitor/test.jsp

 getContextPath(): returns

/HelloCounter

 getServletPath(): returns /visitor

 getPathInfo(): returns /test.jsp

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

${visits+1} is an example of an EL

expression embedded in a JSP document

 ${…} is the syntax used in JSP documents to

mark the contained string as an EL expression

 An EL expression can occur

 In template data: evaluates to Java String

 As (part of) the value of certain JSP attributes:

evaluates to data type that depends on context

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

EL literals:

 true, false

 decimal integer, floating point, scientific-

notation numeric literals

 strings (single- or double-quoted)

 null

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

EL variable names: like Java

 Can contain letters, digits, _ , and $

 Must not begin with a digit

 Must not be reserved:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

EL operators:
 Relational: <, >, <=, >=, ==, !=

 Or equivalents: lt, gt, le, ge, eq, ne

 Logical: &&, ||, !
 Or equivalents: and, or, not

 Arithmetic:
 +, - (binary and unary), *

 /, % (or div, mod)

 empty: true if arg is null or empty
string/array/Map/Collection

 Conditional: ? :

 Array access: [] (or object notation)

 Parentheses for grouping

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

EL automatic type conversion

 Conversion for + is like other binary arithmetic

operators (+ does not string represent

concatenation)

 Otherwise similar to JavaScript

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

EL provides a number of implicit objects

Most of these objects are related to but not

the same as the JSP implicit objects

 JSP implicit objects cannot be accessed directly

by name in an EL expression, but can be

accessed indirectly as properties of one of the EL

implicit objects

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

pageContext: provides access to JSP implicit
objects

 Ex: EL expression pageContext.request is
reference to the JSP request object

page: JSP implicit object representing the servlet
itself

JSP objects page, request, session, and
application all have getAttribute() and
setAttribute() methods

 These objects store EL scoped variables (e.g., visits)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

Reference to non-implicit variable is resolved by

looking for an EL scoped variable in the order:

 page

 request

 session

 application

If not found, value is null

If found, value is Object

 JSP automatically casts this value as needed

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

All EL implicit objects except
pageContext implement Java Map
interface

In EL, can access Map using array or object
notation:

 Servlet: request.getParameter(“p1”)

 EL:
param[‘p1’]

or
param.p1

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Expression Language (EL)

Array/List access:

If EL scoped variable aVar represents

 Java array; or

 java.util.List

and if EL scoped variable index can be cast to

integer

then can access elements of aVar by

 aVar[index]

 aVar.index

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

Three types of markup elements:

 Scripting

 Ex: scriptlet

 Inserts Java code into servlet

 Directive

 Ex: directive.page

 Instructs JSP translator

 Action

 Standard: provided by JSP itself

 Custom: provided by a tag library such as JSTL

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

Two JSPX directives

 directive.page; some attributes:

 contentType

 session: false to turn off use of session object

 errorPage: component that will generate response
if an exception is thrown

 isErrorPage: true to access EL implicit
exception object

 directive.include: import well-formed
XML

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

Common variables:

 var

 Name of a scoped variable that is assigned to by the

action

 Must be a string literal, not an EL expression

 scope

 Specifies scope of scoped variable as one of the

literals page, request, session, or

application

 page default scope, unless otherwise specified

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

set action

 Setting (and creating) a scoped variable

 Setting/creating an element of Map

 Actually, this fails at run time in JWSDP 1.3 (which

treats EL implicit object Maps as read-only)

Map

Key

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

remove action

 Only attributes are var and scope

 Removes reference to the specified scoped

variable from the scope object

<c:remove var=“visits”

scope=“application” />

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

out action

 Normally used to write a string to the out JSP

implicit object

 Automatically escapes all five XML special

characters

 If value is null output is empty string

 Override by declaring default attribute

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

url action

 value attribute value is a URL to be written to

the out JSP implicit object

 URL’s beginning with / are assumed relative to

context path

 param elements can be used to define

parameters that will be URL encoded

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

Alternative to the value attribute (set and

param elements)

 If element has content, this is processed to

produce a String used for value

 Even out element will produce string, not write

to the out object
Assigns value of variable

messy (XML escaped) to

scoped variable clean

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

if action

 General form includes scoped variable to receive

test value

 The element can be empty if var is present

Assigned Boolean value

of test attribute

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

choose action

<c:choose>

<c:when test=“${visits eq 1}”>

Hi!</c:when>

<c:when test=“${visits eq 2}”>

Welcome back!</c:when>

<c:otherwise>

You’re a regular!</c:otherwise>

</c:choose>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

forEach action

 Used to increment a variable:

 Used to iterate over a data structure:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

forEach action

 Can iterate over array, Map, Collection,

Iterator, Enumeration

 Elements of Map are Map.Entry, which

support key and value EL properties:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

JSTL Core actions are designed to be used

for simple, presentation-oriented programming

tasks

More sophisticated programming tasks

should still be performed with a language such

as Java

JavaBeans technology allows a JSP

document to call Java methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

Example

Requirements: JavaBeans class must

 Be public and not abstract

 Contain at least one simple property design pattern

method (defined later)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

Using a JavaBeans class in JSP

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

Using a JavaBeans class as shown:

 Class must have a default (no-argument)

constructor to be instantiated by useBean

 Automatically supplied by Java in this example

 Class should belong to a package (avoids need

for an import)

 This class would go in WEB-INF/classes/my/

directory

Instance of a JavaBeans class is a bean

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

Simple property design patterns

 Two types: getter and setter

 Both require that the method be public

 getter:
 no arguments

 returns a value

 name begins with get (or is, if return type is boolean)
followed by upper case letter

 setter:
 one argument (same type as setter return value)

 void

 name begins with set followed by upper case letter

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

EL calls simple property design method in

response to access of bean property:

 Attempt to read property generates call to

associated get/is method (or error if none

exists)

 Attempt to assign value to property generates

call to associated set method (or error)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

Example setter method

Calling setter from JSP

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

Simple property design pattern methods
associate bean properties with beans

 Name of bean property obtained by removing
get/is/set method prefix and following the rule:

 If remaining name begins with two or more upper case
letters, bean property name is remaining name:
setAValue()  AValue

 If remaining name begins with a single upper case
letter, bean property name is remaining name with this
letter converted to lower case:
getWelcome()  welcome

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Instantiating Beans

Beans can be instantiated by a servlet and

made available to JSP via scope objects

 Servlet

 JSP: no need for useBean action

${sessionScope.testBean.welcome}

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Instantiating Beans

useBean only instantiates a bean if one

does not already exist, can optionally perform

initialization

Evaluated only if useBean instantiates TestBean

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Using Beans

Example:

mortgage

calculation

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Using Beans

Call to

getPayment()

method

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Java API Bean Properties

Many Java API methods conform to simple

property design patterns

Can usually treat as bean properties

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Tag Libraries

Wouldn’t it be nicer to write the mortgage

app as

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Tag Libraries

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Tag Libraries

Place custom tag definition in a tag file

having the name of the custom action

 mortgage.tagx

Place tag file in a tag library (e.g., directory

containing tag files)

 /WEB-INF/tags

Add namespace declaration for tag library

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

Many web apps are based on the Model-

View-Controller (MVC) architecture pattern

Controller

Model Components

View

HTTP

request

HTTP

response

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

Typical JSP implementation of MVC

Controller

(Java servlet)

Model Components

(beans, DBMS)

View

(JSP document)

HTTP

request

HTTP

response

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

Forwarding an HTTP request from a servlet

to another component:

 By URL

 By name

Ex: /HelloCounter.jspx

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

How does the controller know which

component to forward to?

 getPathInfo() value of URL’s can be used

 Example:

 servlet mapping pattern in web.xml:

 URL ends with:

 getPathInfo() returns:

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

JSP include action

Execute specified

component and

include its output

in place of the

include element

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

Adding parameters to the request object

seen by an included component:

request object seen by navbar.jspx will include

parameter named currentPage with value home

 Applications of JSP

 As mentioned before, JSP is one of the most widely used language over the web. I'm going

to list few of them here:

 JSP vs. Active Server Pages (ASP)

 The advantages of JSP are twofold. First, the dynamic part is written in Java, not Visual

Basic or other MS specific language, so it is more powerful and easier to use. Second, it is

portable to other operating systems and non-Microsoft Web servers.

 JSP vs. Pure Servlets

 It is more convenient to write (and to modify!) regular HTML than to have plenty of

println statements that generate the HTML.

 JSP vs. Server-Side Includes (SSI)

 SSI is really only intended for simple inclusions, not for "real" programs that use form

data, make database connections, and the like.

 JSP vs. JavaScript

 JavaScript can generate HTML dynamically on the client but can hardly interact with the

web server to perform complex tasks like database access and image processing etc.

 JSP vs. Static HTML

 Regular HTML, of course, cannot contain dynamic information.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

