CSI 3140
WWW Structures, Techniques and Standards

Separating Programming and
Presentation:
JSP Technology

Why JSP?

*Servlet/CGI approach: server-side code is a
program with HTML embedded

+JavaServer Pages (and

PHP/ASP/ColdFusion) approach: server-side
“code” 1s a document with program embedded

= Supports cleaner separation of program logic
from presentation

= Facilitates division of labor between developers
and designers

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

<html . . m
@:Huw.ua.nrgf@ Default namespace is XHTML
xmlns: jep="Lttp://Java.sun.con/J3P/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core">
<jsp:directive.page contentType="text/html" />
<jsp:output
onit-xml-declaration="yes"
doctype-root-element="html"
doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
doctype-system="http://www.w3.org/TR/xhtnll/DTD/xhtmll-strict .dtd" />

<head>
<title>
HelloCounter. jspx
</title>
</head>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

<html
xmlns="http: tml" Also uses two
smlns: jsp="http://java.sun.comn/J3P/Page" JSP-defined
lns:c="http://java.sun.com/jsp/jstl/co namespaces

<jep:directive.page contentType="text/html" />
<jsp:output
onit-xml-declaration="yes"

doctype-root-element="html"
doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
doctype-system="http://www.w3.org/TR/xhtmnll/DTD/xhtmli-strict.dtd" />

<head>
<title>
HelloCounter. jspx
</title>
</head>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

<html -

xmlns="http://www.w3.org/1999/xhtml" JSP-defined

xmlns: jsp="http://java.sun.com/JSF/Page" markup (initialization)
xmlns:c="http://java.sun.com/jsp/jstl/core">

<head>
<title>
HelloCounter. jespx
</title>
</head>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

<html
xmlns="http://www.w3. org/1999/xhtml"
xmlns: jsp="http://java.sun.com/JSF/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core">
<jep:directive.page contentType="text/html" />
<jsp:output
onit-xml-declaration="yes"
doctype-root-element="html"
doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
doctype-system="http://www.w3.org/TR/xhtnll/DTD/xhtmll-strict .dtd" />

Standard XHTML

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

<body>

JSP
scriptlet

<c:if test="${empty visits}">
<c:set var="visits" scope="application" wvalue="0" />
<fc:if>
<c:set var="visite" scope="application" value="${visits+1}" />

<p>
Hello World!
</p>
<p=>
This page has been viewed

${visits}
times since the most recent
application restart.
</p>
</body>
</html >

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

<body>

<jsp:scriptlet>
/* Initialize and update the "visits" wvariable. */
</jsp:scriptlet>

<p> JSP-based program logic:
Hello World! initialize and increment variable
</p>
<p=>
This page has been viewed
${visits}

times since the most recent
application restart.
</p>
</body>
</html >

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

<body>

<jsp:scriptlet>
/* Initialize and update the "visits" variable. */
</jsp:scriptlet>
<c:1f test="${empty visits}">
<c:get var="visits" scope="application" wvalue="0" />
<fc:if>
<c:set var="visits" scope="application" value="${visits+1}" />

<p>
Hello World!
</p>
<p>
Thiz pare has been viewed
${visits}) Replaced with value of variable
times s1nce the most recent
application restart.
</p>
</body>
</html>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmli-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"><head><title>
HelloCounter. jspx</title></head><body><p>
Hello World!</p><p>

Output This page has been viewed
XHTML 3
document

times since the most recent

after 3 visits application restart.</p></body></html>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example
s="http f fwww. w3 org/1999/ xhtml "

xmlns: jep="http://java.sun.con/J3P/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core">
<jsp:directive.page contentType="text/html" />
<jsp:output
onit-xml-declaration="yes"
doctype-root-element="html"
doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
doctype-system="http://www.w3.org/TR/xhtnll/DTD/xhtmll-strict .dtd" />

<head>
<title>
HelloCounter. jspx
</title>
</head>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

eUsed html as root element

= Can use HTML-generating tools, such as
Mozilla Composer, to create the HTML portions
of the document

= JSP can generate other XML document types as
well

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

<html

<jep:directive.page contentType="text/html" />
<jsp:output
onit-xml-declaration="yes"

doctype-root-element="html"
doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
doctype-system="http://www.w3.org/TR/xhtnll/DTD/xhtmll-strict .dtd" />

<head>
<title>
HelloCounter. jespx
</title>
</head>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

+Namespaces

= JSP (basic elements, normal prefix jsp)

= Core JSP Standard Tag Library (JSTL)
(prefix c)

e Tag library: means of adding functionality beyond
basic JSP

e JSTL Included in with JWSDP 1.3 version of Tomcat

e JSTL provides tag libraries in addition to core (more
later)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

<html -

xmlns="http://www.w3. org/1999/xhtml"
xmlns: jsp="http://java.sun.com/JSF/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core">

<head>
<title>
HelloCounter. jespx
</title>
</head>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

+JSP elements

» directive.page: typical use to set HTTP
response header field, as shown (default is
text/xml)

= output: similar to XSLT output element
(controls XML and document type declarations)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

<html
xmlns="http://www.w3. org/1999/xhtml"
xmlns: jep="http://java.sun.con/J3P/Page"
xmlns:c="http://java.sun.com/jsp/jstl/core">
<jsp:directive.page contentType="text/html" />
<jsp:output
onit-xml-declaration="yes"
doctype-root-element="html"
doctype-public="-//W3C//DTD XHTML 1.0 Strict//EN"
doctype-system="http://www.w3.org/TR/xhtnll/DTD/xhtmll-strict .dtd" />

<head>
<title>
HelloCounter. jspx
</title>
</head>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

<body>

<c:if test="${empty visits}">
<c:set var="visits" scope="application" wvalue="0" />
<fc:if>
<c:set var="visits" scope="application" value="${visits+1}" />

<p>
Hello World!
</p>
<p>
Thiz page has been viewed

${visits}
times since the most recent
application restart.
</p>
</body>
</html>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

+Template data: Like XSLT, this is the HTML
and character data portion of the document

+Scriptlet; Java code embedded in document

= While often used in older (non-XML) JSP pages,
we will avoid scriptlet use

= One use (shown here) is to add comments that
will not be output to the generated page

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

<body>

<jsp:scriptlet>
/* Initialize and update the "visits" wvariable. */
</jsp:scriptlet>

<p>
Hello World!
</p>
<p=>
This page has been viewed

${visits}
times since the most recent
application restart.
</p>
</body>
</html >

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Example

+Core tag library supports simple
programming
= 1T: conditional
e empty: true if variable is non-existent or undefined

= Set: assignment

e application scope means that the variable is accessible
by other JSP documents, other users (sessions)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP and Servlets

+ JSP documents are not executed directly

= When a JSP document is first visited, Tomcat
1. Translates the JSP document to a servlet
2. Compiles the servlet

= Iheservletis executed

* Exceptions provide traceback information
for the servlet, not the JSP

= Theservlets are stored under Tomcat work
directory

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP and Servlets

* A JSP-generated servlet has a
_jspService() method rather than
doGet () ordoPost()

= This method begins by automatically creating a
number of implicit object variables that can be
__ accessed by scriptlets

fujl-}jf;i:t name | Instance of

requast javax.servlet . http.HttpServletRequaeszst
response javax.servlet http.HttpServletResponse
segslon javax.servlet http.HttpSessilon

out javax.servlet.jsp.JepWriter

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP and Servlets

+Translating template data:

out.write("<head>");
out.write("<title>");

out.write("\n HelleCounter. jepx") ;
out.write("</title>"};
out.write("</head>");

out .write("<body>");

*Scriptlets are copied as-Is to servlet:

/* Initialize and update the "visits" wvariable. */

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP and Servlets

+Scriptlets can be written to use the implicit
Java objects:

<jsp:scriptlet>
out.write("<p>Hello " +
request.getParameter ("username") +

H!,::Jl,-'p:)ﬁj ;
</jsp:scriptlet>

+\We will avoid this because:
= |t defeats the separation purpose of JSP

= We can incorporate Java more cleanly using
JavaBeans technology and tag libraries

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP and Servlets

+JSP elements translate to: 18P default

response.setContentType ("text/html);

out.write("<!DOCTYPE html PUBLIC
W=/ /W3C//DTD XHTML 1.0 Strict//EN\"
ZWhttp://www. w3, org/TR/xhtml1/DTD/xhtmll-strict.dtd\">\n") ;

*${visits} in template code translates to
out.write() of value of variable

*Core tags (e.g., 1) normally translate to a
method call

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

+ A web application is a collection of resources
that are used together to implement some web-
based functionality

+Resources include
= Components: servlets (including JSP-generated)

= Other resources: HTML documents, style sheets,
JavaScript, images, non-servlet Java classes, etc.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

+Sharing data between components of a web
application

= Tomcat creates one ServletContext object
per web application

» Callto getServletContext() method of a
servlet returns the associated
ServletContext

» ServletContext supports
setAttribute()/getAttribute()
methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

+Within Tomcat, all of the files of a simple

web a
weba
n JS
x “H

op are placed In a directory under
0pPS
P documents can go in the directory itself

idden” files--such as servlet class files--go

under a WEB-INF subdirectory (more later)

*0Once the web app files are all installed, use
Tomcat Manager to deploy the app

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

* Deploying a web app consisting of a single JSP
document Hel loCounter. jspx:

= Create directory webapps/Hel loCounter

= Copy JSP doc to this directory

« Visit localhost:8080/manager/html

« Enter Hel loCounter in “WAR or Directory URL”

box and click Deploy button

+\Web app Is now at URL
localhost:8080/HelloCounter/
HelloCounter. jspx

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

+Manager app:

= Stop: web app becomes unavailable (404
returned)

= Start: web app becomes available again

= Reload: stop web app, restart with latest versions
of files (no need to restart server)

= Undeploy: stop app and remove all files!
e Always keep a copy of app outside webapps

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

+Set parameters of a web application by

= Creating a deployment descriptor (XML file)
» Saving the descriptor as WEB-INF/web . xml

+Simple example web . xm1:

<web-app
xmlns="http://java.sun.com/xml /ns/j2es"
xmlns:xei="http://www.w3.org/2001/XMLE3chema-instance"

x=1i:schemalocation="http://java.sun.com/xml /ns/jlee/web-app_2_4 .x=d"
version="2.4">

<dizplay-name>HelloCounter</display-name>

</web-app>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

TABLE 2.2: Some elements of web application deployment descriptors.

Element Use (as child of web-app)

display-name Provides name to be displayed for application { for example.
in Manager's Display Name field)

description Provides text describing the web application for documen-
tation purposes

context-param Provides parameter value that can be used by components
for mitialization

servlet Associates a name with either a servlet class or a JSP doe-

ument. and optionally sets other options and parameters
for the servlet/J5P docnment

servlet-mapping Associates a URL (or a set of URL's) with one of the servlet
names defined by a servlet element

session-config Specifies the defanlt for the length of time that a session
can be idle before being terminated
mime-mapping Associates file extensions with MIME types

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

waelcome-file-list Specifies a list of files. If an HTTF request is mapped to
a directory within this application, the server will search
for within the directory for one of these files and respond
with the first file found. If no file 15 found, the directory
contents are displayed by detault.

error-page Specifies a resource (static web page or application com-
ponent | that will provide the HI'TP response when either
a specified HI'TF error status code 1s generated or a spec-
ified Java exception is thrown to the container.

jep-config Associates certain information with the JSP documents of
an application, such as the location of tag Library files and
settings for certain JSP options

security-role Defines a “role” (e.g.. manager, customer) to be used for
purposes of allowing or denving access to certain resources
of a web application

security-constraint | Specifies application resources that should be access-
protected and indicates which nser roles will be granted
access to these resources

login-config Specifies how the contaimer should request user name and
password information (which will subsequently be mapped
to one or more roles) when a user attempts to access a
protected resource

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

*Some examples:

= Setting an initial value accessible by
application.getInitParameter():

<context-paran>
<param-name>initialVisitsValue</param-name>
<param-value>527</param-value>
</context-param>

= Setting the length of time (in minutes) before a
session times out:

<gsesslon-config>
<gezslon-timecut>1</seszion-timeout>
</session-config>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

*Mapping URLSs to app components:

<gervlet>
<gervlet-name>visit_count</servlet-name>
<jsp-file>/HelloCounter.jspx</jep-file>

</servlet>

<gervlet-mapping>
<gervlet-name>visit_count</servlet-name>
<url-pattern>*.jsp</url-pattern>

</servlet-mapping>

<gervlet-mapping>
<gervlet-name>visit_count</servlet-name>
<url-pattern>/visitor/+</url-pattern>

</servlet-mapping>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

*There are four URL patterns (from high to
low precedence)

TABLE 8.3; Forms of URL Patterns

Name Example Post-context path matched

Exact /HelloCounter. jspx | The path /HelloCounter.jepx

Path-prefix | /visitor/# The path /visitor or anv path be-
sinning with /visiter/

Extension ¥.jsp Any path ending in . jsp

Default / Any path

+|f no URL pattern matches, Tomcat treats
path as a relative file name

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Web Applications

+Methods on request object for obtaining
path information:

= Example:
/HelloCounter/visitor/test.jsp

» getContextPath(): returns
/HelloCounter

» getServietPath(): returns /visitor
» getPathInfo(): returns /test.jsp

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP EXxpression Language (EL)

*${visits+1} is an example of an EL
expression embedded in a JSP document

s ${...} is the syntax used in JSP documents to
mark the contained string as an EL expression
= An EL expression can occur

e In template data: evaluates to Java String

e As (part of) the value of certain JSP attributes:
evaluates to data type that depends on context

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP EXxpression Language (EL)

*EL literals:
s true, false

= decimal integer, floating point, scientific-
notation numeric literals

= strings (single- or double-quoted)
s NUll

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP EXxpression Language (EL)

+EL variable names: like Java
» Can contain letters, digits, , and $
= Must not begin with a digit
= Must not be reserved:

and div empty eq false ge gt instanceof
le 1t mod ne not null or true

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP EXxpression Language (EL)

+ EL operators:
» Relational: <, >, <=, >=, ==, I=
e Orequivalents: 1t, gt, le, ge, eq, ne

= Logical: &&, | |, !

e Orequivalents: and, or, not

= Arithmetic:
e +, — (binary and unary), *
e /,% (ordiv, mod)

» empty: trueifargisnull or empty
string/array/Map/Col lection

= Conditional: ?
= Array access: [] (or object notation)
= Parentheses for grouping

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP EXxpression Language (EL)

+EL automatic type conversion

= Conversion for + is like other binary arithmetic
operators (+ does not string represent
concatenation)

= Otherwise similar to JavaScript

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP EXxpression Language (EL)

*EL provides a number of implicit objects

+Most of these objects are related to but not

the same as the JSP implicit objects
= JSP implicit objects cannot be accessed directly
by name In an EL expression, but can be

accessed indirectly as properties of one of the EL
Implicit objects

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP EXxpression Language (EL)

TABLE 8.4: EL implicit objects.

EL Implicit Ob-

ject Name

Represents

pageContext Container for JSP mmplicit objects

pageScope Values accessible via calls to page.getAttribute()

request3cope Values accessible via calls to request . getAttribute ()

sessionScope Values accessible via calls to session.getAttribute ()

application3cope Values accessihle via calls tio
application.getAttribute()

param Values accessible via request . getParameter ()

paramValues Values accessible via request.getParameterValues ()

header Values accessible via request . getHeader ()

headerValues Values accessible via request . getHeaders()

cookie Map from cookie names to their associated Cookie val-
nes (data obtained via request .getCookies())

initParam Values accessible via applicaticn.

getInitParameter ()

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP EXxpression Language (EL)

*pageContext: provides access to JSP implicit
objects

= EX: EL expression pageContext.request is
reference to the JSP request object

*page: JSP implicit object representing the servlet
itself

+ JSP objects page, request, session, and
application all have getAttribute() and
setAttribute() methods

= These objects store EL scoped variables (e.g., v1s1ts)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP EXxpression Language (EL)

+ Reference to non-implicit variable iIs resolved by
looking for an EL scoped variable in the order:

m Ppage
= request
= Session

= application
¢ |f not found, valueisnul 1

+ If found, value is Object
= JSP automatically casts this value as needed

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP EXxpression Language (EL)

+All EL implicit objects except
pageContext implement Java Map
Interface

+|n EL, can access Map using array or object
notation:

» Servlet: request.getParameter(“pl”)
s EL:

param[‘pl’]

or

param.pl

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP EXxpression Language (EL)

* Array/List access:

If EL scoped variable aVar represents
e Java array; or
e Java.util.List

and if EL scoped variable 1ndex can be cast to
Integer
then can access elements of aVar by

e aVar[index]
e aVar.index

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

*Three types of markup elements:
= Scripting
e Ex: scriptlet
e Inserts Java code into servlet
= Directive
e Ex: directive.page
e Instructs JSP translator
= Action

e Standard: provided by JSP itself
e Custom: provided by a tag library such as JSTL

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

*Two JSPX directives

» directive.page; some attributes:
e CcOntentlype
e session: false to turn off use of session object

e errorPage: component that will generate response
If an exception is thrown

e 1sErrorPage: true to access EL implicit
exception object

» directive.i1nclude: import well-formed
XML

<jep:directive.include file="../common/disclaimer.jspf" />

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

TABLE 2.7; Some JSTL core actions.

Action | Purpose

set Assign a value to a scoped variable, creating the variable if necessary
remove | Destroy a scoped variable

out Write data to out 1mplicit object, escaping XML special characters
url Create a URL with query string

if Conditional (if-then) processing

choose | Conditional (if-then-elseif) processing

forEach | Iterate over a collection of items

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

¢ Common variables:

m vVar

e Name of a scoped variable that is assigned to by the
action

e Must be a string literal, not an EL expression

m SCOpe

e Specifies scope of scoped variable as one of the
literals page, request, session, or
application

e page default scope, unless otherwise specified

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

¢set action
= Setting (and creating) a scoped variable

<c:set var="visits" scope="application" valus="${visits+1}" />

= Setting/creating an element of Map

<c:set target<{§{applicaticnsScops
property
value="${visits+1}" />

e Actually, this fails at run time in JWSDP 1.3 (which
treats EL implicit object Maps as read-only)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

*remove action
= Only attributes are var and scope

= Removes reference to the specified scoped
variable from the scope object

<c:remove var=“visits”
scope="application” />

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

eout action

= Normally used to write a string to the out JSP
Implicit object

= Automatically escapes all five XML special
characters

<c:out value="${messy}" />

» Ifvalue is nul 1 output is empty string
e Override by declaring default attribute

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

surl action

= value attribute value is a URL to be written to
the out JSP implicit object

» URL’s beginning with / are assumed relative to
context path

= param elements can be used to define
parameters that will be URL encoded

<c:url value="/szomewhere">
<c:param name="username" value="Kim Sam" />
</c:iurl>

[:E:>> Sy App/esonewhere Pusername=Kim+5am
Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

* Alternative to the value attribute (set and
param elements)

= |If element has content, this is processed to
produce a String used for value

= Even out element will produce string, not write
to the out object

<c:set var="clean"> Assigns value of variable
<c:out value="${messy}" /> messy (XML escaped) to
</c:set> scoped variable clean

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

+1 T action

= General form includes scoped variable to receive

test value Assigned Boolean value
of test attribute

<c:if test="§{visits gt 3}" var("testResult"
You'’re becomling a regular!

</fc:1f>
e The element can be empty If var is present

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

+ choose action
<c:choose>
<c:when test="${visits eq 1}’>
Hi!</c:when>
<c:when test="${visits eq 2}">
Welcome back!</c:when>
<c:otherwise>
You’re a regular!</c:otherwise>
</c:choose>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

eforEach action
= Used to Increment a variable:

<c:forEach var="1" begin="2" end="8" step="2">
${1}
</c:forEach>

= Used to iterate over a data structure:

<c:forBach var="aHeader" items="${header}">

<lir<c:out value="${aHeader}" /></1i>
</c:forEach>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JSP Markup

eforEach action

» Can iterate over array, Map, Col lection,
Iterator, Enumeration

= Elements of Map are Map . Entry, which
support key and value EL properties:

<nl>
<c:forEach var="aHeader" items="§{header}">

<gtrong><c:out value="${aHeader.key}:" />
<c:out value="${aHeader.valuel}" />
</l1i>
</c:forEach>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

+JSTL Core actions are designed to be used
for simple, presentation-oriented programming
tasks

+More sophisticated programming tasks
should still be performed with a language such
as Java

+JavaBeans technology allows a JSP
document to call Java methods

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

* Example

package my;
public class TestBean {
private String greeting = "Hello World!";
public String getWelcome() {
return greeting;

F
}

+ Requirements: JavaBeans class must
= Be publicandnotabstract

= Contain at least one simple property design pattern
method (defined later)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

+Using a JavaBeans class in JSP
<jsp:uszeBean :'L::1=11 class="my.TestBean" />

<hsad>
<title>
BeanTester. jspx
</title>
</head>
<body>
<h1>
<c:out value=”$.we1 comel}" />
</hl>
</body>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

+Using a JavaBeans class as shown:

= Class must have a default (no-argument)
constructor to be instantiated by useBean

e Automatically supplied by Java in this example

= Class should belong to a package (avoids need
foran 1mport)

e This class would go in WEB-INF/classes/my/
directory

¢|nstance of a JavaBeans class 1s a bean

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

*Simple property design patterns
= TWO types: getter and setter

e Both require that the method be pub1ic

e (etter:
+ NO arguments
+ returns a value

+ name begins with get (or 1s, if return type is boolean)
followed by upper case letter

e Setter:
+ 0one argument (same type as setter return value)
+ void
+ name begins with set followed by upper case letter

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

+EL calls simple property design method In
response to access of bean property:

= Attempt to read property generates call to
associated get/1s method (or error if none
exIsts)

= Attempt to assign value to property generates
call to associated set method (or error)

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

*Example setter method

public veid setWelcome(String welcome) {
greeting = welcome;

F
+Calling setter from JSP

<c:set target="${testBean}" property="welcome" value="Howdy!" />

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

JavaBeans Classes

+Simple property design pattern methods
assoclate bean properties with beans

= Name of bean property obtained by removing
get/is/set method prefix and following the rule:

e If remaining name begins with two or more upper case
letters, bean property name is remaining name:
setAValue() > AValue

e If remaining name begins with a single upper case
letter, bean property name is remaining name with this
letter converted to lower case:
getWelcome() = welcome

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Instantiating Beans

+Beans can be instantiated by a servlet and
made available to JSP via scope objects

s Serviet

import my.TestBean;
HttpSession session = request.getSession();

TestBean testBean = new TestBean():
sesslon. setAttribute ("testBean", testBean)

= JSP: no need for useBean action

${sessionScope.testBean.welcome}

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Instantiating Beans

*useBean only instantiates a bean if one
does not already exist, can optionally perform
Initialization

<jep:useBean 1d="testBean" class="my.TestEean" scope="gession">

[{ﬂ:EEt target="${testBean}" property="welcome" value="Greetings!" f}]
</jep:useBean>

Evaluated only if useBean instantiates TestBean

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Using Beans

package mortgage;
public class Mortgage

*Example: {
private double amount = -1.0;
mortgage private int nMonths = -1;
. private double intRate = -1.0;
calculation

public void setAmount (double amount) {
this.amount = amount;

F

public void setMonths(int nMonths) {
this.nMonths = nMonths;

}

public void setRate(double intRate) {
this.intRate = intRate;

}

public double getPayment() {
return ... ;

}

I
Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Using Beans

<jsp:useBean id="calc" class="mortgage.Mortgage" />
<p>The monthly payment for the values you entered would be
<c:zet target="${calc}" property="amount"
value="${param.mortgageimount}" />
<c:set target="${calc}" property="months"
value="${param.pericd}" />
<c:zet target="${calc}" property="rate"
value="${param.rate}" />

${calc.payment Call to

</p> getPayment()
method

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Java APl Bean Properties

+Many Java APl methods conform to simple
property design patterns

<jep:scriptlet>

out.write(request.@etPathInfa ()} :

</]asp:ecriptlet>
+Can usually treat as bean properties

${pageContext.request.pathInfol

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Tag Libraries

*Wouldn’t it be nicer to write the mortgage
app as

<p>The monthly payment for the wvalues you entered would be
<myTag:mortgage amount="${param.mortgageimount}”
period="${param.periocd}"
rate="${param.rate}" />
</p=>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Tag Libraries

<jsp:root version="2.0"
xmlns: jep="http://java.sun.com/J3P/Page"
xmlns: c="http://java.sun.com/jsp/jetl/core">

<jsp:directive.attribute name="amount" required="true" />
<jsp:directive.attribute name="pericd" required="true" />
<jap:directive.attribute name="rate" required="true" />

<jsp:useBean id="calc" class="mortgage.Mortgage" scope="application" />

<c:set target="${calc}" property="amount"
value="${amount}" />

<c:set target="${calc}" property="months"
value="${period}" />

<c:set target="${calc}" property="rates"
value="§{rate}" />

${calc.payment}

</jsp:root>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

Tag Libraries

*Place custom tag definition in a tag file
having the name of the custom action

= mortgage.tagx
*Place tag file in a tag library (e.g., directory
containing tag files)

» /WEB-INF/tags
+ Add namespace declaration for tag library
xmlns:myTag="urn: jsptagdir: /WEE-INF /tags"

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

+Many web apps are based on the Model-
View-Controller (MVC) architecture pattern

HTTP HTTP
request response

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

+Typical JSP implementation of MVC

HTTP HTTP
request response

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

*Forwarding an HTTP request from a servlet
to another component:

= By URL

RequestDispatcher dispatcher = Ex: /HelloCounter.jspx

getServlatContext().getRequestlispatcher Ifj ;

- By name <gservlet>

<zervlet-namet
<jsp-file>/HelloCounter.
</zervlet>

Y /eervlet-nama>
gpx</jep-file>

RequestDispatcher dispatcher =
getServletContext () .getNamedDispatcher {‘} ;

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

public class Controller extends HttpServlet
{

FEE:
*# If session 1z new then increment and display the application
* vigit counter. Otherwise (this is the continuation of an
* active session), display a message.
*/
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, I0Exception

HttpSession session = request.getSession();
if (session.islew()) {
RequestDispatcher wvisitDispatch =
getServletContext () .getNamedDispatcher ("visit_count");
visitDispatch.forward(request, response);

+
else {
RequestDispatcher laterDispatch =
getServletContext () .getlNamedDispatcher ("visit_later");
laterDispatch.forward(request, response);

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

*How does the controller know which
component to forward to?
» getPathInfo() value of URL’s can be used

s Example:
e servlet mapping pattern in web . xm1:

Jfocontroller/#*

e URL ends with: /controller/help?prod=324324
e getPathInfo() returns: /help

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

+JSP 1nclude action

Execute specified
component and
include its output

in place of the
<tr>

'!'_':td Et}'1€="wid‘th: E':'T.H InC|Ude element

><jep:include page="@navbar. jspx"/,-’::ﬂ ftd>

<td style="width:80%"
><jap:include page=" /< td>
</tr>
</thody>
</table>

<table style="width:100%" border="0">
<tbody>

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

MVC

+ Adding parameters to the request object
seen by an included component:

<jsp:include page="/navbar.jspx">
£jsp:paramdname="currentPage” value="home" />
</jep:1include>

request object seen by navbar. jspx will include
parameter named currentPage with value home

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

¢ Applications of JSP
+ As mentioned before, JSRastRt-altheraskiiaalytdsec-laigbngi-tyaishthitilin-gothgmm

to list few of them here:
+ JSP vs. Active Server Pages (ASP)

+ The advantages of JSP are twofold. First, the dynamic part is written in Java, not Visual
Basic or other MS specific language, so it is more powerful and easier to use. Second, it is
portable to other operating systems and non-Microsoft Web servers.

¢ JSP vs. Pure Servlets

+ [t is more convenient to write (and to modify!) regular HTML than to have plenty of
println statements that generate the HTML.

* JSP vs. Server-Side Includes (SSI)

¢ SSl is really only intended for simple inclusions, not for "real" programs that use form
data, make database connections, and the like.

+ JSP vs. JavaScript

¢ JavaScript can generate HTML dynamically on the client but can hardly interact with the
web server to perform complex tasks like database access and image processing etc.

¢ JSP vs. Static HTML
¢ Regular HTML, of course, cannot contain dynamic information.

Guy-Vincent Jourdan :: CSI 3140 :: based on Jeffrey C. Jackson’s slides

