

SNS COLLEGE OF TECHNOLOGY (AN AUTONOMOUS INSTITUTION) COIMBATORE - 35

UNIT 5 Z - Transforms and Difference equations Formation of Difference Equations

i)
$$y_n = A 2^n + B n \rightarrow 0$$

 $y_{n+1} = A 2^{n+1} + B(n+1)$
 $= A 3^n \cdot 2 + B(n+1) \rightarrow 0$
 $y_{n+2} = A 2^{n+2} + B(n+2)$
 $= A A 2^n + B(n+2) \rightarrow 0$
Flimin ating $A \neq B$ from $0, \otimes 2 \otimes 1$ for $n = 1$
 $y_{n+2} = n+1$
 $y_{n+2} = A n+2$
 $y_{n+2} = A n+2$
 $y_{n+2} = A n+2$
 $y_n [(anx_n - An - A)] - 1 ((b_n) y_{n+1} - (b_n) y_{n+2})$
 $+n (A y_{n+1} - 2 y_{n+2})] = 0$
 $-2ny_n - ny_{n+1} - 3 y_{n+1} + (1-n) y_{n+2} = 0$
 $-2ny_n + (3n - 3) y_{n+1} + (1-n) y_{n+2} = 0$.
 $A \rightarrow 0$ i. Form the difference give from
 $i) y_n = (A + B n) 2^n$
 $i) y_n = A + B a^n$.