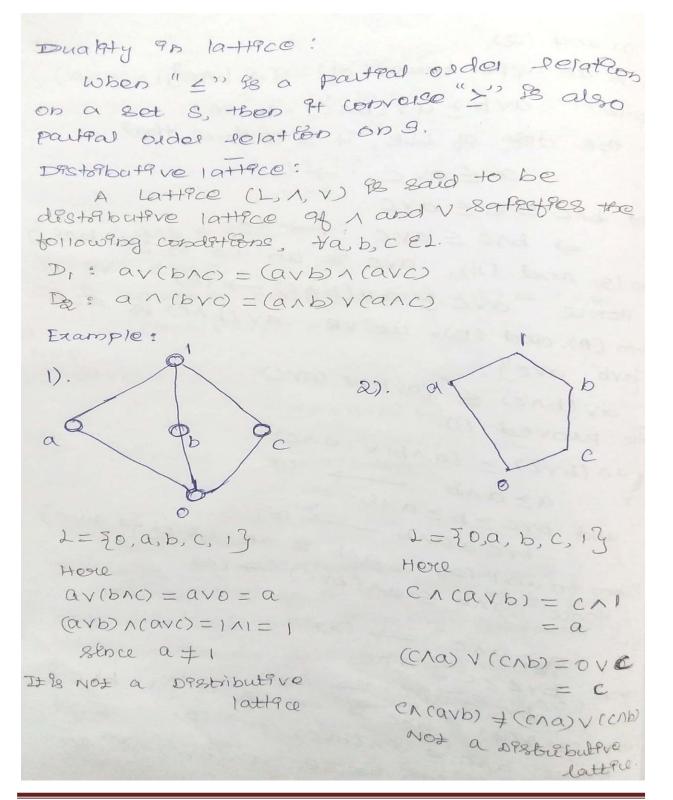


(An Autonomous Institution) Coimbatore-641035.

UNIT 5-LATTICES AND BOOLEAN ALGEBRA



(An Autonomous Institution) Coimbatore-641035.

UNIT5-LATTICES AND BOOLEAN ALGEBRA

Theoremsi: Prove that any chain is a arctifibutive lattice.
P.mat:
Let (L, A, V) be a given chaten and tabel.
Let $(1, \Lambda, V)$ de lets. Of a chain are comparable, sence any 2 elts. Of a chain are comparable, we've fittings $a \leq b$ or $b \leq a$.
case 1: axb I case a: b ≤ a
Then GILB 2 a, by = a Then GILB 2 a, by
$1 \cup B \subseteq a, B \subseteq D \qquad 1 \cup B \subseteq a, B \subseteq C$
In both cases, any & elts. of a choth has both GILB and LUB.
Next we prove (L, 1, V) - Satterfos destribute
Deloposely,
Let a, b, CEL. Sence any chain saffisfres comparable property,
HOLID TOU TUID CO. I
$case : a \leq b \leq c$
2: a 2 C 5 b
$3: b \leq a \leq c$
$4: b \leq c \leq \alpha$
$5: C \leq a \leq b$
$b: c \leq b \leq a$
case 1: $a \leq b \leq C$
Prove D_i : $av(bAC) = (avb) A(avc)$
LHS RHS
(avb) A cave)
$\Rightarrow avb (::b \leq c) \Rightarrow b \land c$
$\Rightarrow b (:: a \leq b) \Rightarrow b$
LHS = RHS

(An Autonomous Institution) Coimbatore-641035.

UNIT5-LATTICES AND BOOLEAN ALGEBRA

.. Dy wondst Een is jour for the case,
Similarly, we can easily prove Di-Pseoperty to
the lemaining is cases.
.. (LA, V) is a distributive lattice.
.. Any obder is a distributive lattice.
Theorem : 2 Nodular Proguality
let It (L, A, V) is a lattice, then for
any a,b, CEL, a
$$\leq c \Leftrightarrow$$
 a v(bAC) \leq (avb)M
Proof:
Agsume $a \leq c \rightarrow (i)$
.. avc = c
By distributive Prequality,
av(bAC) \leq (avb) A (avc)
 \Rightarrow av(bAC) \leq (avb) A (avc)
 \Rightarrow av(bAC) \leq (avb) A (avc)
 \Rightarrow av(bAC) \leq (avb) A c (ussing (i))
 $a \leq c \Rightarrow$ av(bAC) \leq (avb) A c (ussing (i))
 $a \leq c \Rightarrow$ av(bAC) \leq (avb) A c (ussing (i))
 $a \leq c \Rightarrow$ av(bAC) \leq (avb) A c (ussing (i))
 $a \leq c \Rightarrow$ av(bAC) \leq (avb) A c (ussing (i))
 $a \leq c \Rightarrow$ av(bAC) \leq (avb) A c (avc)
Now conversely, assume
 $av(bAC) \leq (avb) A c$
Now by the defp. of LOB and GILB, we've
 $a \leq a \leq c$
.. av(bAC) \leq (avb) A c $\leq c$
 $\Rightarrow a \leq c$
.. av(bAC) \leq (avb) A c $\leq c$
 $\Rightarrow a \leq c$
 $\Rightarrow a \leq c$
 $\Rightarrow a \leq c$
 $\Rightarrow a \leq c$
 $a \leq a \leq b$ av(bAC) $\leq (avb) A c \leq c$
 $\Rightarrow a \leq$

(An Autonomous Institution) Coimbatore-641035.

UNIT5-LATTICES AND BOOLEAN ALGEBRA

Problem
J. ID any distributive lattice
$$(L, \Lambda, V)$$
, Habble,
prove that $aVb = aVc$, $a\Lambda b = a\Lambda c \Rightarrow b = c$
spolp.:
 $b = b V(b\Lambda a)$ (Absorption law)
 $= bV(a\Lambda b)$
 $= bV(a\Lambda c)$ (vp , condition
 $= (aVb) \Lambda (bVc)$
 $= (aVb) \Lambda (bVc)$
 $= (a\Lambda b) V c$
 $= (a\Lambda b) V c$
 $b = c$ Absorption law