

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech. IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF AEROSPACE ENGINEERING

Faculty Name	:	Dr.A.Arun Negemiya,	Academic Year	:	2024-2025 (Odd)
		AP/ Aero			
Year & Branch	:	II AEROSPACE	Semester	:	III
Course	:	23AST202 – Fluid Mechanics for Aerospace			

UNIT V – TURBINES

EFFICIENCIES OF A TURBINE

1. Hydraulic Efficiency (η_h) : $\eta_h = \frac{Power \ delivered \ to \ runner}{Power \ supplied \ at \ inlet} = \frac{R.P}{W.P}$ Where, R.P. = Runner Power W.P. = Water Power

= Water Power

$$R.P. = \frac{W}{g} \frac{[V_{w_1} \pm V_{w_2}] \times u}{1000} kW$$

$$W.P. = \frac{W \times H}{1000} kW$$

Where,

W= Weight of water striking the vanes of the turbine per second

= $\rho g \times Q$ in which Q = Volume of water/s,

 V_{w_1} = Velocity of whirl at inlet,

 V_{w_2} = Velocity of whirl at outlet,

u = Tangential velocity of vane,

 u_1 = Tangential velocity of vane at inlet for radial vane,

 u_2 = Tangential velocity of vane at outlet for radial vane,

H = Net head on the turbine.

Page 1 of 7

2. Mechanical Efficiency (η_m) :

 $\eta_m = \frac{Power \ at \ the \ shaft \ of \ the \ turbine}{Power \ delivered \ by \ water \ to \ the \ runner} = \frac{S.P}{R.P}$

Where, R.P. = Runner Power

S.P. = Shaft Power

3. Volumetric Efficiency (η_v) :

 $\eta_v = \frac{\textit{Volume of water actually striking the runner}}{\textit{Volume of water supplied to the turbine}}$

4. Overall Efficiency (η_0) :

$$\eta_0 = \frac{Power \ available \ at \ the \ shaft \ of \ the \ turbine}{Power \ supplied \ at \ the \ inlet \ of \ the \ turbine} = \frac{S.P}{W.P}$$

Where, W.P. = Water Power

 $\eta_0 = \eta_m \times \eta_h$

Water power in kW = $\frac{\rho \times g \times Q \times H}{1000}$

$$\eta_0 = \frac{P}{\frac{\rho \times g \times Q \times H}{1000}}$$

Page 2 of 7

PERFORMANCE CHARACTERISTIC CURVES OF TURBINES

- Hydraulic Turbines gives their best performance when they are operated at certain conditions of head, discharge, speed and output power.
- Model turbines are tested under different conditions of head, discharge, speed, power, efficiency. Results are plotted in the form of curves and are known as performance characteristic curves.
- ➢ For convenience, curves are plotted in terms of unit quantities.

Types of PC curves

- Main Characteristic curves / Constant head curves
- Operating characteristic curves / Constant Speed curves
- Constant efficiency curves (Muschel Curves)

Main Characteristic curves/ Constant head curves

- Curves are drawn by conducting experiment at constant head.
- Head and gate openings are kept constant and speed is varied by varying load on the turbine.
- For each value of speed, corresponding values of power and discharge are obtained.

For Pelton wheel

For Reaction turbines

Operating Characteristic Curves / Const. Speed Curves

- Tests are performed at constant speed.
- Const. speed is attained by regulating the gate opening thereby varying the discharge flowing through the turbine as the load varies.
- Head may or may not kept constant.

Page 4 of 7

Constant Efficiency Curves

Page 6 of 7

