

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech. IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF AEROSPACE ENGINEERING

Faculty Name	:	Dr.A.Arun Negemiya,	Academic Year	:	2024-2025 (Odd)
		AP/ Aero			
Year & Branch	:	II AEROSPACE	Semester	:	III
Course	:	23AST202 – Fluid Mechanics for Aerospace			

UNIT V – TURBINES

A Kaplan turbine plant develops 3000 kW under a head of 10 m. While running at 62.5 rpm.

The discharge is 350 m^3 /s. The tip diameter of the runner is 7.5 m and the hub to tip ratio is

0.43. Calculate the specific speed, turbine efficiency, the speed ratio and flow ratio.

Speed ratio is based on tip speed.

Hub diameter = $0.43 \times 7.5 = 3.225$ m

Turbine efficiency = $P / \rho Q H g$

$$= \frac{30000 \times 10^{3}}{1000 \times 350 \times 10 \times 9.81} = 0.8787 \text{ or } 87.37\%$$

Specific speed = $\frac{60}{60}$, $\frac{\sqrt{30,000 \times 10^{3}}}{10^{125}} = 308$
Runner tip speed = $\frac{\pi \times 7.5 \times 60}{60} = 23.56 \text{ m/s}$
 \therefore Speed ratio = $28.56/\sqrt{2 \times 9.81 \times 10} = 1.68$
Flow velocity = $\frac{350 \times 4}{\pi (7.5^{2} - 3.225^{2})} = 9.72 \text{ m/s}$
 \therefore Flow ratio = $9.72/\sqrt{2 \times 9.81 \times 10} = 0.69$.