

(An Autonomous Institution) Coimbatore-641035.

UNIT 5- LATTICES AND BOOLEAN ALGEBRA Demorgan's Law ment of an element Theorem: 1 Demalgan's law of lattere. State and Plove (071) If (L, A, V, O, 1) & a complemented lattice, the peove that 1. (anb)' = a' v b' (or) (anb) = a v b 2. $(avb)' = a'Ab' (or) (avb) = \overline{a}A\overline{b}$ Proof: J. To prove that complement of and is a'vb' ie, 1). (anb) 1 (a' vb')=0 and (and) V(a'vb') = 1Nowi). (anb) A (a'vb') = $(a \wedge b) \wedge a') \vee ((a \wedge b) \wedge b')$ $= ((b \land a) \land a') \lor (a \land (b \land b'))$ $= (b \wedge (a \wedge a')) \vee (a \wedge (b \wedge b'))$ =(b10) V (910) $= O \vee O$ $= 0 \rightarrow (1)$ i). (and) $\gamma (a' \vee b') = (a \vee (a' \vee b')) \wedge (b \vee (a' \vee b'))$ botanno=((ava') v b') ~ (bv(b'va')) = $((ava')vb') \wedge ((bvb')va')$ $= (1 \vee b') \land (1 \vee a')$ = 1 1 =1 \longrightarrow (2) Flom (1) and (2). $(a \wedge b)' = a' \vee b'$ D. TO prove that complement of avb is a'nb'. Te., i) $(avb) \wedge (a' \wedge b') = 0$ ii). $(\alpha vb) \vee (\alpha' \wedge b') = 1$

Scanned with CamScanner

(An Autonomous Institution) Coimbatore-641035.

UNIT 5- LATTICES AND BOOLEAN ALGEBRA

Demorgan's Law

(An Autonomous Institution) Coimbatore-641035.

UNIT 5- LATTICES AND BOOLEAN ALGEBRA

Demorgan's Law

Now,
$$x = x \vee 0$$
 $y_{1}(x)$
 $= x \vee (a \wedge y)$ $(x \vee y)$
 $= (x \vee a) \wedge (x \vee y)$
 $= (a \vee x) \wedge (x \vee y)$
 $x = x \vee y \rightarrow (A)$
and $y = y \vee 0$
 $= y \vee (a \wedge x)$
 $= (y \vee a) \wedge (y \vee x)$
 $= (a \vee y) \wedge (x \vee y)$
 $= (a \vee y) \wedge (x \vee y)$
 $y = x \vee y \rightarrow (B)$
From (A) and (B), we've
 $x = x \vee y = y$
 $\therefore x = y$
Hence proved.
Problem:
J. In a complemented, dectributive lattic,
Show that the following are equivalent.
 $a \leq b \Leftrightarrow a \wedge b' = 0 \Leftrightarrow a' \vee b = 1 \Leftrightarrow b' \leq a'$
 (a)
 $D = conserve dy new (b) = 1 \otimes b' \leq a'$
 (a)
 $D = conserve dy new (b) = 1 \otimes b' \leq a'$
 (a)
 $D = conserve dy new (b) = 0 \otimes a' \vee b = 1 \otimes b' \otimes b' \leq a'$
 (a)
 $D = conserve dy new (b) = 0 \otimes a' \vee b = 1 \otimes b' \otimes b' \leq a'$
 (a)
 $D = conserve (b) \Rightarrow (b)$
 $(a) = a \leq b \Rightarrow a \times b' = 0 \otimes a' \otimes b = b \Rightarrow (b)$
 $Now, a \wedge b' = a and a \vee b = b \Rightarrow (b)$
 $= (a \wedge (b \wedge b'))$
 $= (a \wedge (b \wedge b'))$

Scanned with CamScanner

(An Autonomous Institution) Coimbatore-641035.

UNIT 5– LATTICES AND BOOLEAN ALGEBRA

Demorgan's Law

 $ano = (a \land o) = b \land b' = o$: ano = 0 Hence a =b => anb' = 0 OAX = O (11) 今(111) $O_{V} \alpha = \alpha$ Let arb'=0 Take complement on bothsides, INX =X $|V \propto = 1$ $(a \wedge b')' = o'$ a'vb = 1 $\therefore anb'=0 \Rightarrow a'vb=1$ (かか) シ(iv) (cancellation 1 auo) Let a'vb=1 $\Rightarrow (a' \gamma b) \land b' = 1 \land b'$ (Dectorbattere law) $(a' \wedge b') \vee (b \wedge b') = b'$ ·; bAB=0 (a'1 b) vo = b" a'Ab' = b'B'Eal CLADYS part $a'vb=) \Rightarrow b' \leq a'$ (iv) > (i) Let $b' \leq a'$. the name of the former of the Then a'AB' = b'Take complement on both sades, avb = b => bza or a ≤ b $\therefore b' \leq a' \Rightarrow a \leq b$ Hence proved.

Scanned with CamScanner