

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT 4- ALGEBRAIC STRUCTURES

Homomorphism

Define:
NoiPhism of groups:

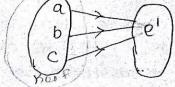
Lot- $(G_i, *)$ and (H, A) be any two groups.

Lot- $(G_i, *)$ and (H, A) be any two groups.

A mapping $f: G_i \rightarrow H$ is solid to be a homomorphism.

If $(G_i, *) = (G_i) \rightarrow (G_i) = (G_i) =$

Kenner of a Homomonphism:


Let f: Gi >> Gi' be a group homomonphism. The

Bet of oits. of Gi which are mapped into e' (identity ing)

Be caused the homoel of f and it is denoted by Kon(f)

Kon (f) - In Gil (Gi) - oil i

HOS (f) = [xEG/f(x) = e1]

I somosiphism:

A mapping of from a group (G1, *) to a group (G1, &) to a group (G1, A) is said to be an gromosiphism if

i), f & a homomorphesm

ii). f 8 1-1 (injective)

iii). + B on to (Swigedive)

In otherwoods, a bijective homomosephism 93 said to be an isomosephism.

cosets:

Let H be a subgroup of G.

i) for any a EG, the left coset of H denoted by a*H = 2a*h, beH3, $Ya \in G$

ii). The eight coset of H is denoted by H*a=7b*a, bEHJ, $\forall a \in G$.

Problem:

I. Let $G_1 = \{1, \alpha, \alpha^2, \alpha^3\}$ $(\alpha^4 = 1)$ be a group and $H = \{1, \alpha^2\}$ & a subgroup of G_1 under multiplication product the stight cosets of H

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT 4- ALGEBRAIC STRUCTURES

Homomorphism

80In.

The right cosets of H 9n G,

$$H * 1 = 71$$
, $a^2y = H$
 $H * a = 7a$, a^3y
 $H * a^3 = 7a^3$, $a^4y = 7a^3$, $y = H$
 $H * a^3 = 7a^3$, $a^5y = 7a^3$, $a^2y = H * a$
 $\Rightarrow H \text{ and } H * a \text{ are two distinct slight cosets of } H9n G$

Here $G = 71$, $G = 71$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-641035.

UNIT 4- ALGEBRAIC STRUCTURES

Homomorphism

Theosem: Any two eight (or left) cosets of 490 G are estace desposat as identical Proof: Let H*a and H*b be two light a subgroup H of 61. Let a be G. we've to prove that either (H*a) n (H*b) = q H*a = H * b 20 80ppose (H*a) n(H*b) = 4. Then I an est. 2 E (H*a) n (H*b) > XEH+a and XEH+b. XEH * 9 (By Previous them.)

YEH * A (By Previous them.)

H* X = H* A -> (1) and XEH+b > H+x= H+b (By Previous them.) From (1) and (2), H*X=H*a=H*b : H*9 = H *b EPHROI (H*Q) O (H*b) = \$ 00 H* a = H*b