
Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 3 Page 1 of 8

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai
Accredited by NAAC-UGC with ‘A++’ Grade (Cycle III) &

Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT)

COIMBATORE-641 035, TAMIL NADU

UNIT IV - EXCEPTION AND MULTITHREADING

Exception handling –Exception types – try catch and finally block, throws –Runtime

exception – Introduction to Multithreading - Thread Creation – Thread control and

priorities - Thread synchronization, Inter-thread communication.

Introduction to Multithreading

Multithreading is a process of executing multiple threads simultaneously.

A thread is a lightweight sub-process, the smallest unit of processing. Multiprocessing

and multithreading, both are used to achieve multitasking.

 use multithreading than multiprocessing because threads use a shared memory

area. They don't allocate separate memory area so saves memory, and context-

switching between the threads takes less time than process.

 Java Multithreading is mostly used in games, animation, etc.

Advantages of Java Multithreading

1) It doesn't block the user because threads are independent and you can perform

multiple operations at the same time.

2) You can perform many operations together, so it saves time.

3) Threads are independent, so it doesn't affect other threads if an exception occurs in a

single thread.

Multitasking

Multitasking is a process of executing multiple tasks simultaneously.

Use multitasking to utilize the CPU. Multitasking can be achieved in two ways:

o Process-based Multitasking (Multiprocessing)

o Thread-based Multitasking (Multithreading)

o Threads share the same address space.

o A thread is lightweight.

o Cost of communication between the thread is low.

What is Thread in java?

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 3 Page 2 of 8

A thread is a lightweight subprocess, the smallest unit of processing. It is a separate path

of execution.

Threads are independent. If there occurs exception in one thread, it doesn't affect other

threads. It uses a shared memory area.

a thread is executed inside the process.

There is context-switching between the threads.

There can be multiple processes inside the OS, and one process can have multiple

threads.

Thread Creation

Threads can be created by using two mechanisms:

1. Extending the Thread class

2. Implementing the Runnable Interface

Java provides Thread class to achieve thread programming.

Thread class provides constructors and methods to create and perform operations on a

thread.

Thread class extends Object class and implements Runnable interface.

S.No
Modifier and

Type
Method Description

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 3 Page 3 of 8

1) void start() It is used to start the execution of the
thread.

2) void run() It is used to do an action for a thread.

3) static void sleep()
It sleeps a thread for the specified

amount of time.

4) static Thread currentThread() It returns a reference to the currently
executing thread object.

5) void join() It waits for a thread to die.

6) int getPriority() It returns the priority of the thread.

7) void setPriority() It changes the priority of the thread.

8) String getName() It returns the name of the thread.

9) void setName() It changes the name of the thread.

10) long getId() It returns the id of the thread.

11) boolean isAlive() It tests if the thread is alive.

12) static void yield()
It causes the currently executing thread
object to pause and allow other threads

to execute temporarily.

13) void suspend() It is used to suspend the thread.

14) void resume()
It is used to resume the suspended

thread.

15) void stop() It is used to stop the thread.

16) void destroy()
It is used to destroy the thread group

and all of its subgroups.

17) boolean isDaemon() It tests if the thread is a daemon thread.

18) void setDaemon()
It marks the thread as daemon or user

thread.

19) void interrupt() It interrupts the thread.

20) boolean isinterrupted()
It tests whether the thread has been

interrupted.

21) static boolean interrupted()
It tests whether the current thread has

been interrupted.

22) static int activeCount() It returns the number of active threads

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 3 Page 4 of 8

in the current thread's thread group.

23) void checkAccess()
It determines if the currently running
thread has permission to modify the

thread.

24) static boolean holdLock()
It returns true if and only if the current

thread holds the monitor lock on the
specified object.

25) static void dumpStack()
It is used to print a stack trace of the
current thread to the standard error

stream.

26)
StackTraceElem

ent[]
getStackTrace()

It returns an array of stack trace
elements representing the stack dump of

the thread.

27) static int enumerate()
It is used to copy every active thread's
thread group and its subgroup into the

specified array.

28) Thread.State getState() It is used to return the state of the
thread.

29) ThreadGroup getThreadGroup()
It is used to return the thread group to

which this thread belongs

30) String toString()

It is used to return a string
representation of this thread, including
the thread's name, priority, and thread

group.

31) void notify()
It is used to give the notification for only

one thread which is waiting for a
particular object.

32) void notifyAll()
It is used to give the notification to all
waiting threads of a particular object.

33) void setContextClassLoader()
It sets the context ClassLoader for the

Thread.

34) ClassLoader getContextClassLoader()
It returns the context ClassLoader for

the thread.

35)

static
Thread.Uncaugh
tExceptionHandl

er

getDefaultUncaughtExcept
ionHandler()

It returns the default handler invoked
when a thread abruptly terminates due

to an uncaught exception.

36) static void setDefaultUncaughtExcept It sets the default handler invoked when

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 3 Page 5 of 8

ionHandler() a thread abruptly terminates due to an
uncaught exception.

Constructors of Thread Class

o Thread()

o Thread(String name)

o Thread(Runnable r)

o Thread(Runnable r, String name)

Life cycle of a Thread (Thread States)

A thread always exists in any one of the following states. These states are:

 New

 Active

 Blocked / Waiting

 Timed Waiting

 Terminated

Thread creation by extending the Thread class

We create a class that extends the java.lang.Thread class. This class overrides the run()

method available in the Thread class.

A thread begins its life inside run() method. We create an object of our new class and

call start() method to start the execution of a thread. Start() invokes the run() method

on the Thread object.

Example

class MultithreadingDemo extends Thread {

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 3 Page 6 of 8

public void run()

{

try {

// Displaying the thread that is running

System.out.println("Thread " + Thread.currentThread().getId()+ " is running");

}

catch (Exception e) {

// Throwing an exception

System.out.println("Exception is caught");

}

}

}

// Main Class

public class Multithread{

public static void main(String[] args)

{

int n = 8; // Number of threads

for (int i = 0; i < n; i++) {

MultithreadingDemo object= new MultithreadingDemo();

object.start();

}

}

}

Thread creation by implementing the Runnable Interface

We create a new class which implements java.lang.Runnable interface and override

run() method. Then we instantiate a Thread object and call start() method on this

object.

Example

class MultithreadingDemo implements Runnable {

public void run()

{

try {

// Displaying the thread that is running

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 3 Page 7 of 8

System.out.println("Thread " + Thread.currentThread().getId()+ " is running");

}

catch (Exception e) {

// Throwing an exception

System.out.println("Exception is caught");

}

}

}

// Main Class

class Multithread {

public static void main(String[] args)

{

int n = 8; // Number of threads

for (int i = 0; i < n; i++) {

Thread object= new Thread(new MultithreadingDemo());

object.start();

}

}

}

Sr.
No. Key Thread Runnable

1 Basic
Thread is a class. It is used to
create a thread

Runnable is a functional
interface which is used to
create a thread

2 Methods
It has multiple methods
including start() and run()

It has only abstract method
run()

Ms A Aruna / AP/ IT/23CSB201 Object Oriented Programming/ Semester 03/Unit 3 Page 8 of 8

Sr.
No.

Key Thread Runnable

3
Each thread creates a unique
object and gets associated with it

Multiple threads share the
same objects.

4 Memory More memory required Less memory required

5 Limitation

Multiple Inheritance is not
allowed in java hence after a
class extends Thread class, it can
not extend any other class

If a class is implementing the
runnable interface then your
class can extend another class.

