

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE- 641 035

Arrays in C

Two-Dimensional Arrays

A two-dimensional array (2D array) is essentially an array of arrays. It is used to

represent data in a matrix form or a table with rows and columns. Each element in

a 2D array is accessed using two indices: one for the row and one for the column.

1. Declaring a Two-Dimensional Array

To declare a two-dimensional array, you specify the data type, the array name, the

number of rows, and the number of columns.

Syntax:

data_type array_name[row_size][column_size];

 data_type: The type of the elements (e.g., int, float, char).

 array_name: The name of the array.

 row_size: The number of rows.

 column_size: The number of columns.

Example:

int matrix[3][4]; // 3 rows, 4 columns

In this example, matrix is a 2D array with 3 rows and 4 columns. It can hold a total

of 3 * 4 = 12 elements.

2. Initializing a Two-Dimensional Array

You can initialize a 2D array either at the time of declaration or later in the

program.

a. At Declaration

You can initialize a two-dimensional array with values by providing values for all

the elements. The values are written row-wise inside curly braces {}.

int matrix[3][4] = {

 {1, 2, 3, 4},

 {5, 6, 7, 8},

 {9, 10, 11, 12}

};

In this example, the array matrix is a 3x4 array, and its elements are initialized in a

row-major order.

b. Partial Initialization

If you don't provide values for all the elements, the remaining elements are

initialized to 0 (for numeric types like int).

int matrix[3][4] = {

 {1, 2, 3}, // 4th element will be 0

 {5, 6}, // 3rd and 4th elements will be 0

 {9} // 2nd, 3rd, and 4th elements will be 0

};

c. Implicit Size Determination

You can omit the number of rows or columns, and the compiler will automatically

determine the size based on the initializer list.

int matrix[][4] = {

 {1, 2, 3, 4},

 {5, 6, 7, 8},

 {9, 10, 11, 12}

};

Here, the compiler determines that there are 3 rows, and 4 columns are explicitly

specified.

3. Accessing Elements of a Two-Dimensional Array

To access elements in a two-dimensional array, you use the row index and column

index.

array_name[row_index][column_index];

 row_index: The row number (starting from 0).

 column_index: The column number (starting from 0).

Example:

int matrix[3][4] = {

 {1, 2, 3, 4},

 {5, 6, 7, 8},

 {9, 10, 11, 12}

};

printf("Element at (1, 2): %d\n", matrix[1][2]); // Accesses element at 2nd row,

3rd column (7)

4. Modifying Elements of a Two-Dimensional Array

You can modify elements of a 2D array by assigning new values using the row and

column indices.

matrix[1][2] = 99; // Modify the element at 2nd row, 3rd column to 99

5. Iterating Over a Two-Dimensional Array

To iterate over a 2D array, you can use two nested for loops: one for the rows and

another for the columns.

Example:

int matrix[3][4] = {

 {1, 2, 3, 4},

 {5, 6, 7, 8},

 {9, 10, 11, 12}

};

for (int i = 0; i < 3; i++) { // Loop through rows

 for (int j = 0; j < 4; j++) { // Loop through columns

 printf("matrix[%d][%d] = %d\n", i, j, matrix[i][j]);

 }

}

This will print all elements of the matrix, row by row.

6. Calculating the Total Number of Elements in a Two-Dimensional Array

The total number of elements in a 2D array is the product of the number of rows

and the number of columns. You can calculate it using the sizeof operator.

int rows = sizeof(matrix) / sizeof(matrix[0]); // Number of rows

int columns = sizeof(matrix[0]) / sizeof(matrix[0][0]); // Number of columns

Alternatively, if the dimensions are known, you can directly multiply:

int total_elements = 3 * 4; // 3 rows * 4 columns = 12 elements

7. Example Program Using Two-Dimensional Arrays

Here's a simple program demonstrating the use of a 2D array in C:

#include <stdio.h>

int main() {

 // Declare and initialize a 3x4 matrix

 int matrix[3][4] = {

 {1, 2, 3, 4},

 {5, 6, 7, 8},

 {9, 10, 11, 12}

 };

 // Print the original matrix

 printf("Original Matrix:\n");

 for (int i = 0; i < 3; i++) {

 for (int j = 0; j < 4; j++) {

 printf("%d ", matrix[i][j]);

 }

 printf("\n");

 }

 // Modify an element (2nd row, 3rd column)

 matrix[1][2] = 99;

 // Print the modified matrix

 printf("\nModified Matrix:\n");

 for (int i = 0; i < 3; i++) {

 for (int j = 0; j < 4; j++) {

 printf("%d ", matrix[i][j]);

 }

 printf("\n");

 }

 return 0;

}

Output:

yaml

Copy code

Original Matrix:

1 2 3 4

5 6 7 8

9 10 11 12

Modified Matrix:

1 2 3 4

5 6 99 8

9 10 11 12

8. Memory Layout of a Two-Dimensional Array

In C, a 2D array is stored in row-major order. This means that the elements of

each row are stored in contiguous memory locations, followed by the elements of

the next row, and so on.

Example:

Consider the following 2D array:

int matrix[2][3] = {

 {1, 2, 3},

 {4, 5, 6}

};

In memory, this array will be stored as:

csharp

Copy code

[1, 2, 3, 4, 5, 6]

Thus, the memory layout looks like a linear sequence where the rows are stored

one after another.

9. Limitations of Two-Dimensional Arrays

1. Fixed Size: Like one-dimensional arrays, two-dimensional arrays in C have

a fixed size. The number of rows and columns must be known at compile

time for static arrays.

2. No Bounds Checking: C does not perform bounds checking, so accessing

out-of-bounds indices can lead to undefined behavior.

10. Dynamic Two-Dimensional Arrays

If you need to create a 2D array where the number of rows and columns is

determined at runtime, you can use dynamic memory allocation (via malloc or

calloc).

#include <stdio.h>

#include <stdlib.h>

int main() {

 int rows = 3, cols = 4;

 int **matrix = (int **)malloc(rows * sizeof(int *)); // Allocate memory for rows

 for (int i = 0; i < rows; i++) {

 matrix[i] = (int *)malloc(cols * sizeof(int)); // Allocate memory for columns

in each row

 }

 // Initialize the matrix

 int value = 1;

 for (int i = 0; i < rows; i++) {

 for (int j = 0; j < cols; j++) {

 matrix[i][j] = value++;

 }

 }

 // Print the matrix

 for (int i = 0; i < rows; i++) {

 for (int j = 0; j < cols; j++) {

 printf("%d ", matrix[i][j]);

 }

 printf("\n");

 }

 // Free the allocated memory

 for (int i = 0; i < rows; i++) {

 free(matrix[i]);

