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Hidden Markov Models
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® Hidden Markow Models:

- A hidden Markov model (HMM) is a statistical
model,in which the system being modeled is
assumed to be a Markov process (Memoryless

process: its future and past are independent )
with hidden states.



Hidden Markov Models

® Hidden Markow Models:

- Has a set of states each of which has limited
number of transitions and emissions,

- Each transition between states has an
assisgned probability,

- Each model strarts from start state and ends
in end state,
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What is ‘hidden'? What is ‘Markov model’?



Hidden Markov Models

® Markow Models :

¢ Talk about weather,
® Assume there are three types of weather:

- Sunny,

- Rainy, P

- Foggy. @™

<



Markov Models

® Weather prediction is about the what would be the weather
tomorrow,

- Based on the observations on the past.



Markov Models

® \Weather atday n is q,Esunny rainy, foggy |

- q, depends on the known weathers of the past
days (. Gyyr---)



Markov Models

® We want to find that:
P((Inl(]n—l s n—=2, -y 41 )

- means given the past weathers what is the
probability of any possible weather of today.



Markov Models

® Markow Models:

® For example:
® if we knew the weather for last three days was:

R

4%y

® the probability that tomorrow would be'e® is:

- J—
P(q= | q= %% Qq,= q,=



Markov Models

® Markow Models and Assumption (cont.):

- Therefore, make a simplifying assumption Markov
assumption:

® For sequence: {ql.qg. qn}

p(‘]len—l-‘]n—'B- ---~(11) — P((]n‘q:z—l)

® the weather of tomorrow only depends on today
(first order Markov model)
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® Markow Models and Assumption (cont.):

Examples:
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Markov Models

® Markow Models and Assumption (cont.):
Examples:

® |f the weather yesterday was rainy and today is foggy
what is the probability that tomorrow it will be sunny?
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Markov Models

® Markow Models and Assumption (cont.):

- Examples:

® |f the weather yesterday was rainy and today is foggy
what is the probability that tomorrow it will be sunny?
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Markov assumption



Hidden Markov Models

® Hidden Markov Models (HMMs):

- What is HMM:

® Suppose that you are locked in a room for several days,
® you try to predict the weather outside,

® The only piece of evidence you have is whether the
person who comes into the room bringing your daily
meal is carrying an umbrella or not.
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® Hidden Markov Models (HMMs):

- What is HMM (cont.):
® assume probabilities as seen in the table:

Weather | Probability of umbrella
Sunny 0.1
Rainy 0.8
Fogay 0.3

Probability P(x;|g;) of carrving an umbrella (2; = true)

based on the weather ¢; on some day i



Hidden Markov Models

® Hidden Markov Models (HMMs):

- What is HMM (cont.):

® Finding the probability of a certain weather
q,€1sunny rainy, foggy |

i4 [S—

® is based on the observations X;:
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® Hidden Markov Models (HMMs):
- What is HMM (cont.):

® Using Bayes rule:

P X' |l1,' ) P(v‘]z )
P(x;)

P(gi|xi) =

® For n days:

o qn ) Play

Pl@isiis; Qril DLy oot Ln) =

e )



Hidden Markov Models

® Hidden Markov Models (HMMs):

- Examples:

® Suppose the day you were locked in it was sunny. The
next day, the caretaker carried an umbrella into the
room.

® You would like to know, what the weather was like on
this second day.



Discrete Markov Processes
(Markov Chains)

» The goal is to make a sequence of decisions where a
particular decision may be influenced by earlier decisions.

» Consider a system that can be described at any time as
being in one of a set of V' distinct states w,. us. ..., Wy

» Let w(t) denote the actual state attime ¢t wheret = 1.2.....

» The probability of the system being in state w(?) is
P(w(t)|lw(t—-1),..., w(l)).



Hiddden Markov Models

» We assume that the state w:(f) is conditionally independent
of the previous states given the predecessor state w(f — 1),
.e.,

P(w(t)|lw(t—1)..... w(l)) = Plw(t)|w(t—1)).

» We also assume that the Markov Chain defined by
P(w(t)lw(t — 1)) is time homogeneous (independent of the
time t).



Hidden Markov Models

» A particular sequence of states of length T is denoted by

» The model for the production of any sequence is described
by the transition probabilities

a;; = P(w(t) = w;jjw(t — 1) = w;)

where i,j € {1,...,N}, a;; > 0,and Y0, ai; = 1.Vi.



Hidden Markov Models

» There is no requirement that the transition probabilities are
symmetric (a;; # a;;, in general).

» Also, a particular state may be visited in succession
(a;; # 0, in general) and not every state need to be visited.

» This process is called an observable Markov model
because the output of the process is the set of states at
each instant of time, where each state corresponds to a
physical (observable) event.



Hidden Markov Model Examples
e ————

» Consider the following 3-state first-order Markov model of
the weather in Ankara:

» wy. rain/snow
» w»: cloudy

* wg: sunny

@ — {ni_f}
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Hidden Markov Models
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» We denote the observation at time ¢ as v(t¢) and the
probability of producing that observation in state w(#) as
Pluv(t)w(t)).

» There are many possible state-conditioned observation
distributions.

» When the observations are discrete, the distributions
bh;k — ])(IH) — l'k!?l'”] — U‘.,>

are probability mass functions where j € {1...... \V},

€L M}, by =2 0, and V‘A  bix = 1, V).



Hidden Markov Models
|

» When the observations are continuous, the distributions are
typically specified using a parametric model family where
the most common family is the Gaussian mixture

4
M,
"

bi(x) = 2 Qg PIX| g 2jk)

k=1

where a;; > 0and Y02, a, = 1,Yj.

» We will restrict ourselves to discrete observations where a
particular sequence of visible states of length T is denoted
by _

VT = {u(1), v(2),..., v(T)}.



Hidden Markov Models
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» An HMM is characterized by:

» N, the number of hidden states

M, the number of distinct observation symbols per state

{aij}, the state transition probability distribution

{b;x}, the observation symbol probability distribution

{m = P(w(l) = w;)}, the initial state distribution

» © = ({a;;}.{b;x}. {7i}), the complete parameter set of the
model

Y

Y

Y

¥



Three Fundamental Problems for
HMMs

» Evaluation problem: Given the model, compute the
probability that a particular output sequence was produced
by that model (solved by the forward algorithm).

» Decoding problem: Given the model, find the most likely
sequence of hidden states which could have generated a
given output sequence (solved by the Viterbi algorithm).

» Learning problem: Given a set of output sequences, find
the most likely set of state transition and output probabilities
(solved by the Baum-Welch algorithm).



HMM Evaluation Problem
e |

» A particular sequence of observations of length T is
denoted by
1-’T:{t'4l|.z'[2] ..... v(T)}.

» The probability of observing this sequence can be
computed by enumerating every possible state sequence of
length 7" as

PVTI®)= Y POIVT.WTO)

—

all wT
- Z PV IWT,@)P(WT|O).

all w7



HMM Evaluation Problem
gEm————

» This summation includes N7 terms in the form

I ‘§
PYVITIwWhHp(w?) = (H P(v(t) uw,f)}) (H Plw(t)|lw(t - 1)])
t=1 t=1
T
== H Plv(t)w(t)) Plw(t)w(t —1))

where P(w(t)|w(t —=1))fort =1is P(w(1)).
» It is unfeasible with computational complexity O(N7T).

» However, a computationally simpler algorithm called the
forward algorithm computes P(V7|©) recursively.



HMM Evaluation Problem

» Define a;(t) as the probability that the HMM is in state w; at

time ¢ having generated the first ¢ observations in V*

a;(t) = P(v(l),v(2),....v(1), w(t) = w;|O).
» ai(t).;j=1,...,. \' can be computed as

|
]

» Then, P(VT|®) = 37, a;(T).

y ==



HMM Evaluation Problem

» Similarly, we can define a backward algorithm where

3i(t) = Plv(t+1).v(t+2)..... o(T)w(t) = w;. O)

is the probability that the HMM will generate the
observations from ¢t + 1 to 7 in V7 given that it is in state

at time 1.
b Oilt). 4= \V can be computed as
e l t=1T
Bith) = g
z]_! i,if T 1}”,’)’))1',:_0...]; I = :I‘ - 1 ..... 1

» Then, P(VT|©) = TN 3:(1)mibiy).

sl



HMM Evaluation Problem
T — O |

» The computations of both a;(¢) and 3;(t) have complexity

O(N?°T).
» For classification, we can compute the posterior
probabilities
P(VT|®)P(O®)
P(O|VT) = — e
‘ ' P(VT)

where P(©) is the prior for a particular class, and P(V7|©)
iIs computed using the forward algorithm with the HMM for
that class.

» Then, we can select the class with the highest posterior.



HMM Decoding Problem
e ——

» Given a sequence of observations V', we would like to find
the most probable sequence of hidden states.

» One possible solution is to enumerate every possible
hidden state sequence and calculate the probability of the
observed sequence with O( N7 T) complexity.

» We can also define the problem of finding the optimal state
sequence as finding the one that includes the states that
are individually most likely.

» This also corresponds to maximizing the expected number
of correct individual states.



HMM Decoding Problem
e —

» Define ~;(#) as the probability that the HMM is in state u; at
time ¢ given the observation sequence V7

vi(t) = P(w(t) = u;| V', ©)
a;(t) (1) o;(t)5;(1)

P(VTIO) YV a;(t)3(t)

.".—4';?1

where 3", %i(t) = 1.
» Then, the individually most likely state w(t) at time ¢

becomes
w(t) = wy where i = arg max ~;(t).
\

ge=]....,



HMM Decoding Problem
e ——

» One problem is that the resulting sequence may not be
consistent with the underlying model because it may include
transitions with zero probability (a;; = 0 for some i and j).

» One possible solution is the Viterbi algorithm that finds the
single best state sequence W’ by maximizing
P(WT|VT,©) (or equivalently P(WT.VT|©)).

» This algorithm recursively computes the state sequence
with the highest probability at time ¢t and keeps track of the
states that form the sequence with the highest probability at

time T



HMM Learning Problem
I —

» The goal is to determine the model parameters {a;;}, {b;x}
and {=;} from a collection of training samples.

» Define &;;(t) as the probability that the HMM is in state w; at
time t — 1 and state w; at time ¢ given the observation
sequence V*

&;(t) = P(w(t — 1) = wi, w(t) = w;|V', ©)

P(VT|®)

3.(t)

Juit) M)

‘—“\_'_ E:,\z, a;(t — l\(),_, b



HMM Learning Problem

» (t) defined in the decoding problem and &;;(¢) defined
here can be related as

N

1=1

» Then, a;;, the estimate of the probability of a transition from
w; att — 1 to w; at ¢, can be computed as

expected number of transitions from w; to w;
a;;
'~ expected total number of transitions away from w;
V*T

t—’\’_!

(1)

Y o7ilt—1)




HMM Learning Problem

» Similarly, b;., the estimate of the probability of observing the
symbol v, while in state w;, can be computed as

i expected number of times observing symbol v in state w;

k= : :
. expected total number of times in w;
i
2= Ou(t).ve Vilt)
= S
>_4f=1 'Jt‘f)

where 4..).., IS the Kronecker delta which is 1 only when

v(t) = vg.

» Finally, 7;, the estimate for the initial state distribution, can
be computed as #; = ~;(1) which is the expected number of

times in state w; attime ¢t = 1.



HMM Learning Problem
e

» These are called the Baum-Welch equations (also called
the EM estimates for HMMSs or the forward-backward
algorithm) that can be computed iteratively until some
convergence criterion is met (e.g., sufficiently small
changes in the estimated values in subsequent iterations).

.

» See (Bilmes, 1998) for the estimates b;(x) when the
observations are continuous and their distributions are
modeled using Gaussian mixtures.



Application Areas of HMM
e 77

* On-line handwriting recognition

» Speech recognition

» Gesture recognition

» Language modeling

* Motion video analysis and tracking
» Stock price prediction

and many more....
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