

# **SNS COLLEGE OF TECHNOLOGY**

Coimbatore-35

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University,

Chennai

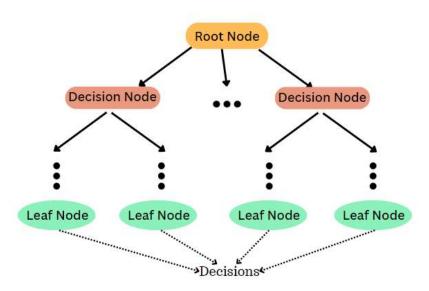
# **DEPARTMENT OF COMPUTER APPLICATIONS**

# 23CAT702 – MACHINE LEARNING

### II YEAR III SEM

### UNIT IV – TREE AND RULE MODELS

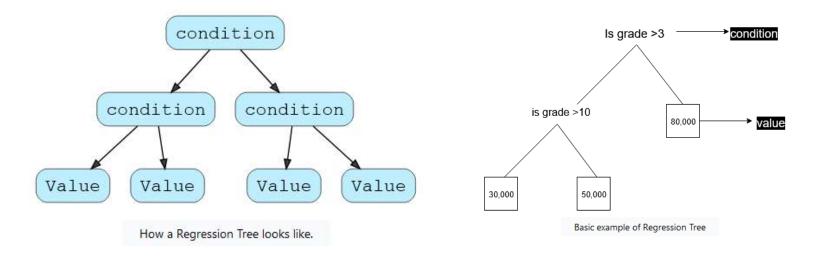
**TOPIC 29 – Trees – regression trees** 






Tree - Introduction

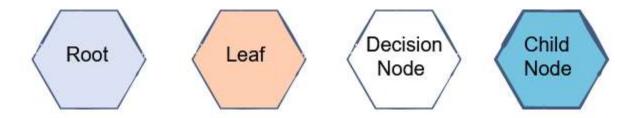
SIS


Tree: Non-parametric supervised learning algorithm, which is utilized for both classification and regression tasks





**Regression Tree** 


*Regression trees are decision trees* in which the target variables can take continuous values instead of class labels in leaves





### Features of regression trees

- **1. Root**: Beginning of the decision tree. The first node represents the first condition based on the criteria of the data provided.
- **2. Leaf**: Last node in the tree is represented by the value in the decision tree above. Terminal node that does not point to any condition or value.
- **3. Decision Node**: Nodes after the root where any decision or condition is further divided into different categories.
- **4. Child Node**: The node that is further divided into different categories is called a parent node. The nodes that result from this division are called child nodes.







# **Advantages of regression trees**

- 1. Visualization of data becomes easier as users can identify and process each and every step.
- 2. A specific decision node could be set to have a **priority** against other decision nodes.
- 3. As the regression tree progresses, **undesired data will be filtered at each step**. As a result, only important data is left to process, which increases the efficiency and accuracy of our design.
- 4. It is easy to prepare regression trees they can be used to present data during meetings, presentations, etc.



| Day | Outlook  | Temp | Humidity | Wind   | GolfPlayers |
|-----|----------|------|----------|--------|-------------|
| D1  | Sunny    | Hot  | High     | Weak   | 25          |
| D2  | Sunny    | Hot  | High     | Strong | 30          |
| D3  | Overcast | Hot  | High     | Weak   | 46          |
| D4  | Rain     | Mild | High     | Weak   | 45 .        |
| D5  | Rain     | Cool | Normal   | Weak   | 52          |
| D6  | Rain     | Cool | Normal   | Strong | 23          |
| D7  | Overcast | Cool | Normal   | Strong | 43          |
| D8  | Sunny    | Mild | High     | Weak   | 35          |
| D9  | Sunny    | Cool | Normal   | Weak   | 38          |
| D10 | Rain     | Mild | Normal   | Weak   | 46          |
| D11 | Sunny    | Mild | Normal   | Strong | 48          |
| D12 | Overcast | Mild | High     | Strong | 52          |
| D13 | Overcast | Hot  | Normal   | Weak   | 44          |
| D14 | Rain     | Mild | High     | Strong | 30          |

#### Standard deviation

Average of golf players =

25 + 30 + 46 + 45 + 52 + 23 + 43 + 35 + 38 + 46 + 48 + 52 + 44 + 30

14

Average of golf players = 39.78

Standard deviation of golf players

$$sd = \sqrt{\frac{(25-39.78)^2 + (30-39.78)^2 + \dots + (30-39.78)^2}{14}}$$

SD=9.32

-



| Day | Outlook | Temp | Humidity | Wind   | Golf<br>Players |
|-----|---------|------|----------|--------|-----------------|
| D1  | Sunny   | Hot  | High     | Weak   | 25 🗸            |
| D2  | Sunny   | Hot  | High     | Strong | 30              |
| D8  | Sunny   | Mild | High     | Weak   | 35              |
| D9  | Sunny   | Cool | Normal   | Weak   | 38              |
| D11 | Sunny   | Mild | Normal   | Strong | 48              |

## Outlook

Outlook →{sunny, overcast, rain}

Calculate standard deviation of golf players for all of these outlook candidates.

 $(25 - 35.2)^2 + (30 - 35.2)^2 + (35 - 35.2)^2 + (38 - 35.2)^2 + (48 - 35.2)^2$ 

### Sunny outlook

- Average of golf players for sunny outlook  $=\frac{25+30+35+38+48}{5} = 35.2$
- SD of golf players for sunny outlook =

• SD of golf players for sunny outlook = 7.78





| Day | Outlook  | Temp | Humidity | Wind   | Golf<br>Players |
|-----|----------|------|----------|--------|-----------------|
| D3  | Overcast | Hot  | High     | Weak   | 46 🗸            |
| D7  | Overcast | Cool | Normal   | Strong | 43 🗸            |
| D12 | Overcast | Mild | High     | Strong | 52              |
| D13 | Overcast | Hot  | Normal   | Weak   | 44              |

### Outlook

- Outlook  $\rightarrow$ {sunny, overcast, rain}
- Calculate standard deviation of golf players for all of these outlook candidates.

### Sunny Overcast

- Average of golf players for Overcast outlook =  $\frac{46+43+52+44}{4} = 46.25$
- SD of golf players for Overcast outlook =  $\sqrt{\frac{1}{2}}$

SD of golf players for sunny Overcast = 3.49



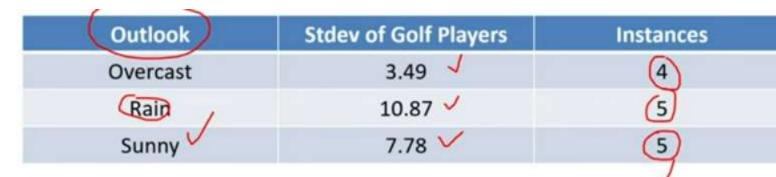


| Day | Outlook | Temp | Humidity | Wind   | Golf<br>Players |
|-----|---------|------|----------|--------|-----------------|
| D4  | Rain    | Mild | High     | Weak   | 45              |
| D5  | Rain    | Cool | Normal   | Weak   | 52              |
| D6  | Rain    | Cool | Normal   | Strong | 23              |
| D10 | Rain    | Mild | Normal   | Weak   | 46              |
| D14 | Rain    | Mild | High     | Strong | 30              |

- Outlook
  - Outlook →{sunny, overcast, rain}
  - Calculate standard deviation of golf players for all of these outlook candidates.

### Sunny Rain

- Average of golf players for Rain outlook =  $\frac{45+52+23+46+30}{5} = 39.2$
- SD of golf players for Rain outlook =  $\sqrt{\frac{(45-39)}{3}}$


$$(39.2)^2 + (52 - 39.2)^2 + (23 - 39.2)^2 + (46 - 39.2)^2 + (30 - 39.2)^2$$
  
5

• SD of golf players for sunny Rain = 10.87









- Weighted standard deviation for outlook =  $\left(\frac{4}{14}\right) * 3.49 + \left(\frac{5}{14}\right) * 10.87 + \left(\frac{5}{14}\right) * 7.78 = 7.66$
- Global standard deviation of golf players 9.32
- Standard deviation reduction for outlook = 9.32 7.66 = 1.66





#### Temperature

Temperature can be hot, cool or mild. We will calculate standard deviations for those candidates.

| lot temp | perature | 1     |          |        |              |
|----------|----------|-------|----------|--------|--------------|
| Day      | Outlook  | Temp. | Humidity | Wind   | Golf Players |
| 1        | Sunny    | Hot   | High     | Weak   | 25           |
| 2        | Sunny    | Hot   | High     | Strong | 30           |
| 3        | Overcast | Hot   | High     | Weak   | 46           |
| 13       | Overcast | Hot   | Normal   | Weak   | 44           |

Golf players for hot temperature = {25, 30, 46, 44}

Standard deviation of golf players for hot temperature # 8.95









| Day | Outlook  | Temp. | Humidity | Wind   | Golf Players |
|-----|----------|-------|----------|--------|--------------|
| 4   | Rain     | Mild  | High     | Weak   | 45           |
| 8   | Sunny    | Mild  | High     | Weak   | 35           |
| 10  | Rain     | Mild  | Normal   | Weak   | 46           |
| 11  | Sunny    | Mild  | Normal   | Strong | 48           |
| 12  | Overcast | Mild  | High     | Strong | 52           |
| 14  | Rain     | Mild  | High     | Strong | 30           |

Golf players for mild temperature = {45, 35, 46, 48, 52, 30}

Standard deviation of golf players for mild temperature = 7.65

Regression Tree/Dr.N.Nandhini/AP/MCA/SNSCT





| Temp | Stdev of Golf Players | Instances               |
|------|-----------------------|-------------------------|
| Hot  | 8.95                  | 4                       |
| Mild | 10.51                 | $\overline{\mathbf{A}}$ |
| Cool | 7.65                  | 6                       |

- Weighted standard deviation for  $Temp = \left(\frac{4}{14}\right) * 8.95 + \left(\frac{4}{14}\right) * 10.51 + \left(\frac{6}{14}\right) * 7.65 = 8.84$
- Global standard deviation of golf players 9.32
- Standard deviation reduction for Temp = 9.32 8.84 = 0.47



#### Humidity

Humidity is a binary class. It can either be normal or high.

#### High humidity

| Day | Outlook  | Temp. | Humidity | Wind   | Golf Players |
|-----|----------|-------|----------|--------|--------------|
| 1   | Sunny    | Hot   | High     | Weak   | 25           |
| 2   | Sunny    | Hot   | High     | Strong | 30           |
| 3   | Overcast | Hot   | High     | Weak   | 46           |
| 4   | Rain     | Mild  | High     | Weak   | 45           |
| 8   | Sunny    | Mild  | High     | Weak   | 35           |
| 12  | Overcast | Mild  | High     | Strong | 52           |
| 14  | Rain     | Mild  | High     | Strong | 30           |

1

Golf players for high humidity = {25, 30, 46, 45, 35, 52, 30}

Standard deviation for golf players for high humidity = 9.36







| Humidity | Stdev of Golf Players | Instances |
|----------|-----------------------|-----------|
| High     | 9.36                  | 7         |
| Normal   | 8.73                  | 7         |

- Weighted standard deviation for Humidity =  $\left(\frac{7}{14}\right) * 9.36 + \left(\frac{7}{14}\right) * 8.73 = 9.04$
- Global standard deviation of golf players 9.32
- Standard deviation reduction for Humidity = (9.32 9.04 = 0.27)





#### Strong Wind

| 0   |          |       |          | . /    |              |
|-----|----------|-------|----------|--------|--------------|
| Day | Outlook  | Temp. | Humidity | Wind   | Golf Players |
| 2   | Sunny    | Hot   | High     | Strong | 30           |
| 6   | Rain     | Cool  | Normal   | Strong | 23           |
| 7   | Overcast | Cool  | Normal   | Strong | 43           |
| 11  | Sunny    | Mild  | Normal   | Strong | 48           |
| 12  | Overcast | Mild  | High     | Strong | 52           |
| 14  | Rain     | Mild  | High     | Strong | 30           |

Golf players for strong wind= {30, 23, 43, 48, 52, 30}



Standard deviation for golf players for strong wind = 10.59





#### Weak Wind

| 1  | Sunny    | Hot  | High   | Weak | 25 |
|----|----------|------|--------|------|----|
| 3  | Overcast | Hot  | High   | Weak | 46 |
| 4  | Rain     | Mild | High   | Weak | 45 |
| 5  | Rain     | Cool | Normal | Weak | 52 |
| 8  | Sunny    | Mild | High   | Weak | 35 |
| 9  | Sunny    | Cool | Normal | Weak | 38 |
| 10 | Rain     | Mild | Normal | Weak | 46 |
| 13 | Overcast | Hot  | Normal | Weak | 44 |

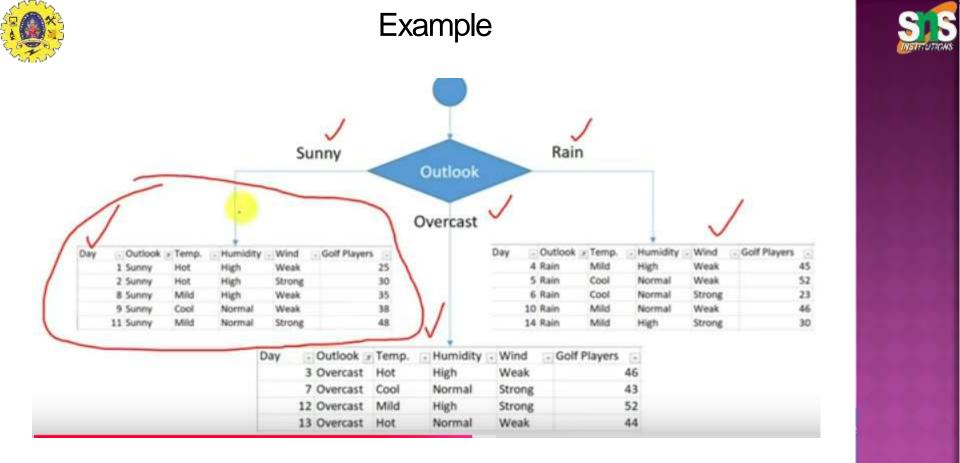
Golf players for weakk wind= (25, 46, 45, 52, 35, 38, 46, 44)

Standard deviation for golf players for weak wind = 7.87

Regression Tree/Dr.N.Nandhini/AP/MCA/SNSCT






| Wind   | Stdev of Golf Players | Instances |
|--------|-----------------------|-----------|
| Strong | 10.59 🗸               | 6         |
| Weak   | 7.87                  | 8         |

- Weighted standard deviation for Wind =  $\left(\frac{6}{14}\right) * 10.59 + \left(\frac{8}{14}\right) * 7.87 = 9.03$
- Global standard deviation of golf players 9.32
- Standard deviation reduction Wind = 9.32 9.03 = 0.29













### Sunny Outlook

| Day | Outlook | Temp. | Humidity | Wind   | Golf Players |
|-----|---------|-------|----------|--------|--------------|
| 1   | Sunny   | Hot   | High     | Weak   | 25           |
| 2   | Sunny   | Hot   | High     | Strong | 30           |
| 8   | Sunny   | Mild  | High     | Weak   | 35           |
| 9   | Sunny   | Cool  | Normal   | Weak   | 38           |
| 11  | Sunny   | Mild  | Normal   | Strong | 48           |

Golf players for sunny outlook = {25, 30, 35, 38, 48}

Standard deviation for sunny outlook = 7.78



#### Sunny outlook and Hot Temperature

| Day | Outlook | Temp. | Humidity | Wind   | Golf Players |
|-----|---------|-------|----------|--------|--------------|
| 1   | Sunny   | Hot   | High     | Weak   | 25           |
| 2   | Sunny   | Hot   | High     | Strong | 30           |

Standard deviation for sunny outlook and hot temperature = 2.5

#### Sunny outlook and Cool Temperature

| Day | Outlook | Temp. | Humidity | Wind | Golf Players |
|-----|---------|-------|----------|------|--------------|
| 9   | Sunny   | Cool  | Normal   | Weak | 38           |

Standard deviation for sunny outlook and cool temperature =  $0^{\sqrt{2}}$ 

#### Sunny outlook and Mild Temperature

| Day | Outlook | Temp. 💛 | Humidity | Wind   | Golf Players |
|-----|---------|---------|----------|--------|--------------|
| 8   | Sunny   | Mild    | High     | Weak   | 35           |
| 11  | Sunny   | Mild    | Normal   | Strong | 48           |

Standard deviation for sunny outlook and mild temperature = 6.5

#### Regression Tree/Dr.N.Nandhini/AP/MCA/SNSCT







| Temperature | Stdev for Golf Players | Instances |
|-------------|------------------------|-----------|
| Hot         | 2.5                    | 2         |
| Cool        | 0                      | 1         |
| Mild        | 6.5                    | 2         |

Weighted standard deviation for sunny outlook and temperature = (2/5)x2.5 + (1/5)x0 + (2/5)x6.5 = 3.6

Standard deviation reduction for sunny outlook and temperature (7.78) 3.6 = 4.18



#### Sunny outlook and high humidity

| Day | Outlook | Temp. | Humidity | Wind   | Golf Players |
|-----|---------|-------|----------|--------|--------------|
| 1   | Sunny   | Hot   | High     | Weak   | 25           |
| 2   | Sunny   | Hot   | High     | Strong | 30           |
| 8   | Sunny   | Mild  | High     | Weak   | 35           |

Standard deviation for sunny outlook and high humidity = 4.08

#### Sunny outlook and normal humidity

| Day | Outlook | Temp. | Humidity | Wind   | Golf Players |
|-----|---------|-------|----------|--------|--------------|
| 9   | Sunny   | Cool  | Normal   | Weak   | 38           |
| 11  | Sunny   | Mild  | Normal   | Strong | 48           |

Standard deviation for sunny outlook and normal humidity = 5





| Humidity | Stdev for Golf Players | Instances |
|----------|------------------------|-----------|
| High     | 4.08                   | 3         |
| Normal   | 5.00                   | 2         |

Weighted standard deviations for sunny outlook and humidity = (3/5)x4.08 + (2/5)x5 = 4.45

Standard deviation reduction for sunny outlook and humidity = 7.78 - 4.45 = 3.33





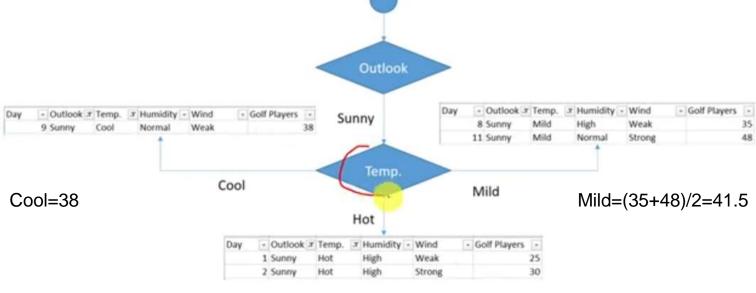
# Apply the same procedure to wind to calculate the SD.....

Standard deviation for sunny outlook and weak wind = 5.56

| Wind   | Stdev for Golf Players | Instances |
|--------|------------------------|-----------|
| Strong | 9                      | 2         |
| Weak   | 5.56                   | 3         |

Weighted standard deviations for sunny outlook and wind = (2/5)x9 + (3/5)x5.56 = 6.93

Standard deviation reduction for sunny outlook and wind = 7.78 - 6.93 = 0.85

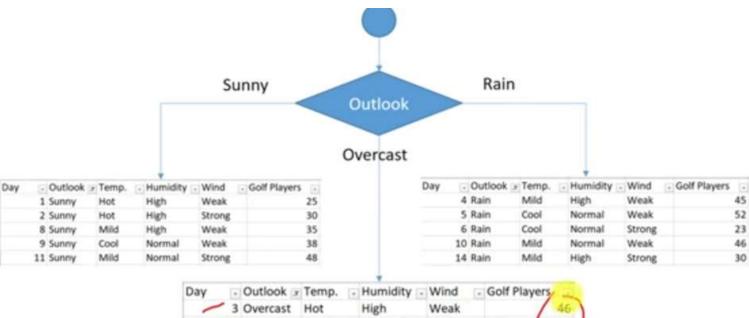





| Feature     | Standard Deviation Reduction |
|-------------|------------------------------|
| Temperature | 4.18                         |
| Humidity    | 3.33                         |
| Wind 😑      | 0.85                         |








Hot=(25+30)/2=27.5

If number of instance less than 5 then prune (ie: find the Average-leaf node)







| Day |   | Outlook . | Temp. | Humidity - | Wind   | Golf Players |
|-----|---|-----------|-------|------------|--------|--------------|
| 1   | 3 | Overcast  | Hot   | High       | Weak   | 4            |
| /   | 7 | Overcast  | Cool  | Normal     | Strong | 4            |
| -1  | 2 | Overcast  | Mild  | High       | Strong | 5            |
| -1  | 3 | Overcast  | Hot   | Normal     | Weak   | 4            |

Overcast=(46+43+52+44)/4=46.25





### Rainy Outlook

| Day | Outlook | Temp. | Humidity | Wind   | Golf Players |
|-----|---------|-------|----------|--------|--------------|
| 4   | Rain    | Mild  | High     | Weak   | 45           |
| 5   | Rain    | Cool  | Normal   | Weak   | 52           |
| 6   | Rain    | Cool  | Normal   | Strong | 23           |
| 10  | Rain    | Mild  | Normal   | Weak   | 46           |
| 14  | Rain    | Mild  | High     | Strong | 30           |

We need to find standard deviation reduction values for the rest of the features in same way for the sub data set above.

Standard deviation for rainy outlook = 10.87





### Sunny outlook and high humidity

| Day | Outlook | Temp. | Humidity | Wind   | Golf Players |
|-----|---------|-------|----------|--------|--------------|
| 1   | Sunny   | Hot   | High     | Weak   | 25           |
| 2   | Sunny   | Hot   | High     | Strong | 30           |
| 8   | Sunny   | Mild  | High     | Weak   | 35           |

Standard deviation for sunny outlook and high humidity = 4.08





### Sunny outlook and normal humidity

| Day | Outlook | Temp. | Humidity | Wind   | Golf Players |
|-----|---------|-------|----------|--------|--------------|
| 9   | Sunny   | Cool  | Normal   | Weak   | 38           |
| 11  | Sunny   | Mild  | Normal   | Strong | 48           |

Standard deviation for sunny outlook and normal humidity = 5





#### Rainy outlook and humidity

| Humidity | Standard deviation for golf players | instances |
|----------|-------------------------------------|-----------|
| High 🖌   | 7.50 🗸                              | 2         |
| Normal   | 12.50                               | 3         |

Weighted standard deviation for rainy outlook and humidity = (2/5)x7.50 + (3/5)x12.50 = 10.50

Standard deviation reduction for rainy outlook and humidity = 10.87 - 10.50 = 0.37





#### Rainy outlook and temperature

| Temperature | Standard deviation for golf players | instances |
|-------------|-------------------------------------|-----------|
| Cool        | 14.50                               | 2         |
| Mild        | 7.32                                | 3         |

Weighted standard deviation for rainy outlook and temperature = (2/5)x14.50 + (3/5)x7.32 = 10.19

Standard deviation reduction for rainy outlook and temperature = 10.87 - 10.19 = 0.67





| Humidity | Stdev for Golf Players | Instances |
|----------|------------------------|-----------|
| High     | 4.08                   | 3         |
| Normal   | 5.00                   | 2         |

Weighted standard deviations for sunny outlook and humidity = (3/5)x4.08 + (2/5)x5 =

Standard deviation reduction for sunny outlook and humidity = 7.78 - 4.45 = 3.33

4.45

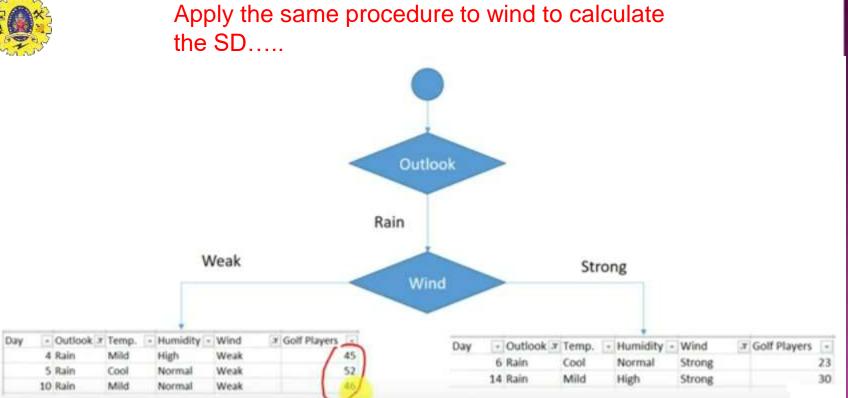




### Rainy outlook and wind

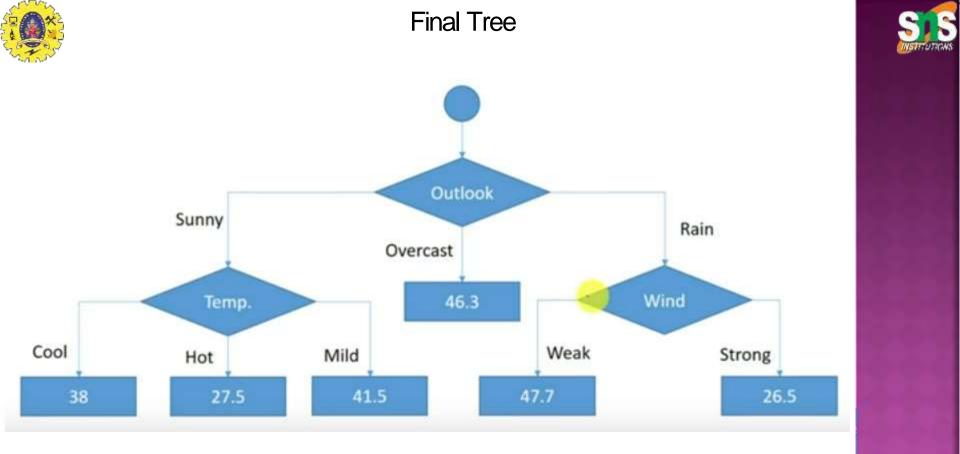
| Wind     | Standard deviation for golf players | instances |
|----------|-------------------------------------|-----------|
| Weak     | 3.09                                | 3         |
| Strong 🥕 | 3.5                                 | 2         |

Weighted standard deviation for rainy outlook and wind = (3/5)x3.09 + (2/5)x3.5 = 3.25


Standard deviation reduction for rainy outlook and wind = 10.87 - 3.25 = 7.62






| Feature     | Standard deviation reduction |
|-------------|------------------------------|
| Temperature | 0.67                         |
| Humidity    | 0.37                         |
| Wind        | 7.62                         |





Strong=(23+30)/2=26.5

weak=(45+52+46)/3=47.6

