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Discrete Fourier Series 

• Given a periodic sequence ~x[n] with period N so that 

~x[n]  ~x[n  rN] 

• The Fourier series representation can be written as 
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• The Fourier series representation of continuous-time periodic 
signals require infinite many complex exponentials 

• Not that for discrete-time periodic signals we have 

ej2 / Nk m Nn  ej2 / Nk nej2m n  ej2 / Nkn  

• Due to the periodicity of the complex exponential we only 
need N exponentials for discrete time Fourier series 
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Discrete Fourier Series Pair 

• A periodic sequence in terms of Fourier series coefficients 

• The Fourier series coefficients can be obtained via 

• For convenience we sometimes use 

• Analysis equation 

• Synthesis equation 
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Example 1 

• DFS of a periodic impulse train 

• Since the period of the signal is N 

• We can represent the signal with the DFS coefficients as 
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Example 2 

• DFS of an periodic rectangular pulse train 

• The DFS coefficients 
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Properties of DFS 

• Linearity 
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• Shift of a Sequence 
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Symmetry Properties 
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Symmetry Properties Cont’d 
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Periodic Convolution 

• Take two periodic sequences 

• Periodic convolution is commutative 
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• Let’s form the product 
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• The periodic sequence with given DFS can be written as 
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Periodic Convolution Cont’d 

• Substitute periodic convolution into the DFS equation 

• Interchange summations 

• The inner sum is the DFS of shifted sequence 

• Substituting 
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Graphical Periodic Convolution 
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The Fourier Transform of Periodic Signals 

• Periodic sequences are not absolute or square summable 

– Hence they don’t have a Fourier Transform 

• We can represent them as sums of complex exponentials: DFS 

• We can combine DFS and Fourier transform 

• Fourier transform of periodic sequences 

– Periodic impulse train with values proportional to DFS coefficients 

– This is periodic with 2 since DFS is periodic 

• The inverse transform can be written as 
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• Therefore the Fourier transform is 

Example 

• Consider the periodic impulse train 
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• The DFS was calculated previously to be 
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• The Fourier transform of the periodic sequence is 

• This implies that 

• DFS coefficients of a periodic signal can be thought as equally  
spaced samples of the Fourier transform of one period 

r   r   

Relation between Finite-length and Periodic Signals 

• Consider finite length signal x[n] spanning from 0 to N-1 

• Convolve with periodic impulse train 
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Example 

• Consider the following  
sequence 
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• The Fourier transform 
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• The DFS coefficients 
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THANK YOU 

16 
16EC201/ SS/Unit IV/Mr.R.Sathish Kumar 11/17/202

4 
23ECT202/ SS/Unit IV/Mr.J.PRABAKARAN 


