SNS COLLEGE OF TECHNOLOGY
(AN AUTONOMOUS INSTITUTION) ‘

Approved by AICTE & Affiliated to Anna University
Accredited by NBA & Accrediated by NAAC with ‘A++’ Grade,
Recognized by UGC saravanampatti (post), Coimbatore-641035.

P

>

FITUTIoNS

Department of Biomedical Engineering
Course Name: 19BMT401 —Virtual Reality in Medicine

IV Year : VII Semester

unit IV-VR programming

19BMT401 /Virtual Reality in Medicine/Dr Karthika A/AP/BME

VR PROGRAMMING

VR SYSTEM ARCHITECTURE

VR ENGINE
(multiprocessor,
graphics accelerator)

I/0 DEVICES
(mouse, joystick,
glove, HMD, etc.)

VR Toolkits

USER
(programmer,
trainee, etc.)

e

n

H

| |

|
- -- -.- - - - -
' TASK ',
: (training,
¢ programming, *»
[

1 teleoperation. etc.]

h---------

System architecture

VR Programming Toolkits

Are extensible libraries of object-oriented functions
designed to help the VR developer;

Support various common 1/0 devices used in VR (so
drivers need not be written by the developer);

Allow mmport of CAD models (saves time), editing of
shapes, specifying object hierarchies, collision detection
and multi-level of detail, shading and texturing, run-time
management;

Have built-in networking functions for multi-user
Interactions, etc.

VR Toolkits can be classified by:
Whether text-based or graphical-programming;
The type of language used and the library size;
The type of 1/0 devices supported;
The type of rendering supported;
Whether general-purpose or application specific;

Whether proprietary (more functionality, better
documented) or public domain (free, but less
documentation and functionality)

VR Toolkits in Early 90s

RenderWare (Cannon), VRT3/Superscape (Dimension
Ltd.), Cyberspace Developer Kit (Autodesk), Cosmo
Authoring Tool (SGI/Platinum/CA), Rend386 and others;

They allowed either text-based programming
(RenderWare, CDK and Rend386), or graphical

programming (Superscape and Cosmo);

They were platform-independent and generally did not
require graphics acceleration hardware;

As a result they tended to use “low-end” I/O devices
(mouse) and to support flat shading to maintain fast
rendering.

Fosix, 725 1THEEZ 856
Area: Outsidel

Frames/sec. 45

Rend386 scene

VR Toolkits discussed in this chapter

Name Application Proprietary | Library size language
Area
WorldToolKit (WTK) General purpose yes “C” =1,000 functions
Sense8/EAI/EDS/)
Java3D General no Implemented in C
(Sun Microsystems) Purpose Programming in Java
19 packages, 275 classes
GHOST (SensAble Haptics for yes C++
Technologies) Phantom
PeopleShop Military/civilian yes C/C++

(Boston Dynamics)

The scene graph:

Is a hierarchical organization of objects (visible or not) in the
virtual world (or “universe”) together with the view to that world;

Scene graphs are represented by a tree structure, with nodes
connected by branches.

Visible objects are represented by external nodes, which are called
leaves (they have no children). Example nodes F, G, H, 1

Internal nodes represent transformations (which apply to all their
children) Root node

External node
R —
o, |

‘. Internal node
S S =

Scene graph shows that
the ball is a child of “scene”

Scene graph has been modified, such that
the ball is now a child of the palm

10

WTK Initiation

LU

WTK Initiation

Model Geometry

|

Define scene graph

|

Define and link
sensors

|

Define action
functions

|

Define networking

12

WTK geometry:

Are the only visible
objects in the scene (others
like viewpoint, serial ports,
etc; are not);

Geometries are either
imported from CAD (ex. dxf
or 3ds formats), or from

VRML (wrl) or through
neutral file format (nff);

Custom geometry created
through polygons and
vertices;

Imported geometry:
WTgeometrynode load(hand)

Geometry primitive:
WTgeometry newsphere()

Custom geometry:
WTgeometry begin

.l"’“].'pobv_addm()
WTgeometry save

WTK object
appearance:

Objects have material
properties such as the way
they reflect light (ambient,
diffuse, specular, shininess,
emissive, opacity); These
properties are specified using
material tables

Textures are loaded from
files or created and then
filtered (scaled) to the object
s1ze

To load a material table:
WTmtable load(filename)

Applying texture:
WTtexture load
WTgeometry settexture
WTtexture setfilter

4

WTK Initiation

Model Geometry

|

Define scene graph

»

Define and link
Sensors

}

Define action
functions

}

Define networking

15

WTK scene graph:

The scene consists of various objects, some visible (geometry),
some not (viewpoint, transforms, etc.); These objects are nodes in a
scene graph;

The scene graph is the hierarchical arrangement of nodes that
expresses the nodes spatial organization and relationship to each
other.

Each scene graph has only one root node.

S—
-é-

18

WTK scene graph terminology:
If a node has a sub-tree that includes another node, it is its
ancestor. Example node A is ancestor of E;

A parent node 1s a node direct ancestor. C 1s parent of E but not of
[. C 1s an ancestor of I;

Siblings are children nodes of the same parent. F,G,H,I are sibling
nodes;

[f a node is rendered before another, it is its predecessor (need not
be its ancestor). B is a predecessor of J, but not its ancestor. Node B
can affect the rendering of node J.

Scene graph tree Scene graph sub-tree

WTK scene graph traversal:

The order in which nodes appear in the scene graph determines
the order in which they are rendered. This 1s because at each frame
the scene graph is traversed top-to-bottom, left-to-right;

Advantages of using scene graph include object grouping, level-

of-detail switching, instancing of geometry and sub-trees (better
memory usage), increased frame rate (better culling), multiple scene

graphs.

Traversal order is A, B, C.....

- e
= S =

18

WTK node types:

Geometry nodes — used for visible objects;

Attribute nodes (fog, light, transform) — affect the way the
geometry nodes are rendered; Need to be placed in the graph before
the geometry they affect;

Procedural nodes (root, level-of-detail, separator, switch, etc) —
control the way the scene graph is processed

Scene graph separator node— allows

tracks 1 and 2 to move independently.

Also prevents the track transform to influence
the tank turret geometry

18

WTK movable node:

To help manage the state of the geometry nodes, and simplify
scene graph construction, WTK has a self-contained kind of node
called movable node;

A movable node has its own separator, transform and content
(geometry, light, switch, level-of-detail) nodes;

There can be several movable nodes arranged in a hierarchy

¢ Parent

WTK movable node hierarchy:

To create a robot arm, each of the objects need to be created
separately and loaded as movable nodes (base, lower arm, middle
arm, effector);

Then they need to be linked in a scene graph

base

lower

middle

effector

\~ —’
- e
” -~
A\
e /7
—~ —’
o —
” -~
A\
% /7
—~ —’
- e
\
/7
~-"

- =
(A\
4

lower arm

base
”~
~

effector

middle arm

WTmovnode load(base)

WTmovnode load{lower)
WTmovnode load(middle)
WTmovnode load(effector)
WTmovnode attach(baselower);
WTmovnode attach(lower, middle);
WTmovnode attach(middle, effector);

2%

WTK virtual hand hierarchy:

palm

,—

Thumb proximal | ¥Z

Thumb distal

(’é R~
_,/ proximal
) \\

~
—
\\ i B ,——u\
04 " \\ (‘ ;\
< ‘; 7/
N | Index

Index middle -
e . N
~ R ,I
Index distal

22

WTK virtual hand loading:

/* Load the hand model */
Palm = WTmovnode load(Root, "Palm.nff", 1.0);

ThumbProximal = WTmovnode load(Palm, "ThumbProximal.nfi", 1.0);
ThumbDistal = WTmovnode load(ThumbProximal, "ThumbDistal.nff"', 1.0);

IndexProximal = WTmovnode load(Palm, "IndexProximal.nffi™, 1.0);
IndexMiddle = WTmovnode load(IndexProximal, "IndexMiddle.nff", 1.0);
IndexDistal = WTmovnode load(IndexMiddle, "IndexDistal.nff", 1.0);

MiddleProximal = WTmovnode load(Palm, "MiddleProximal.nfi™, 1.0);
MiddleMiddle = WTmovnode load(MiddleProximal, "MiddleMiddle.nfi", 1.0);
MiddleDistal = WTmovnode load(MiddleMiddle, "MiddleDistal.nff™', 1.0);

RingProximal = WTmovnode_load(Palm, "RingProximal.nff", 1.0);
RingMiddle = WTmovnode load(RingProximal, "RingMiddle.nff", 1.0);
RingDistal = WTmovnode load(RingMiddle, "RingDistal.nff", 1.0);

SmallProximal = WTmovnode load(Palm, "SmallProximal.nfi", 1.0);
SmallMiddle = WTmovnode load(SmallProximal, "SmallMiddle.nff", 1.0);
SmallDistal = WTmovnode load(SmallMiddle, "SmallDistal.nff", 1.0);

WTK virtual hand hierarchy:

WTmovnode attach(Palm,ThumbProximal);
WTmovnode attach(ThumbProximal, ThumbDistal);
WTmovnode attach(Palm, IndexProximal);
WTmovnode attach(IndexProximal, IndexMiddle);
WTmovnode attach(IndexMiddle, IndexDistal);
WTmovnode attach(Palm, MiddleProximal);
WTmovnode attach(MiddieProximal, MiddleMiddle);
WTmovnode attach(MiddleMiddle, MiddleDistal);
WTmovnode attach(Palm, RingProximal);
WTmovnode attach(RingProximal, RingMiddle);
WTmovnode attach(RingMiddle, RingDistal);
WTmovnode attach(Palm, SmallProximal);
WTmovnode attach(SmallProximal, SmallMiddle);
WTmovnode attach(SmaliMiddle, SmallDistal);

Model Geometry

|

Define scene graph

WTK Initiation

|

Define and link
sensors

'

Define action
functions

|

Define networking

WTK sensors:

Allow the user to interact dynamically with the simulation by
providing input and receiving feedback from the simulation. Some
of the supported sensors are:

track balls (spaceball, geometry ball Jr);

trackers (Polhemus Fastrack, Isotrack, Insidetrack; Ascension Bird
and Flock of Birds);

sensing gloves (5DT serial glove, Pinch glove, CyberGlove);
displays (CrystalEyes glasses, BOOM display, Virtual /0 HMD,
CyberMaxx2 HMD)
Etc.

26

Camera “fly-by”

WORK ENVELOPE

Using the trackball:

We can use the spaceball to interactively
change the viewpoint to the scene;

The spaceball needs to be declared as a
sensor and needs to linked to the serial port;

Then the sensor needs to be attached to the
viewpoint.

main() {
WTsensor *spaceball;
Winode *root, *scene;

/* initialize the universe*/
WTaniverse new(WTDISPLAY DEFAULT, WTWINDOW_DEFAULT);

/*load scene at the root*/
root= WTaniverse getrootnodes();
Scene=Winode load(root,”myscene”, 1.0);

/*attach sensor to the serial port*/
spaceball=WTspaceball new(SERIAL2);

/*attach viewpoint to the spaceball*/
WTviewpoint_addressor(Wtuniverse getviewpoints(), spaceball);

/* start simulation */
WTuniverse ready();
WTuniverse go();
/*stop simulation®/
WTaniverse delete();
return0;

}

WTK Initiation

Model Geometry

|

Define scene graph

|

Define and link
Sensors

|

Define action
functions

|

Define networking

WTK action functions:

To do the ball grasping we need to check for collision between

the hand and the ball, and then we need to make the ball a child of
the palm.

WTK action functions are user defined functions that are executed
at every simulation loop (frame). Such functions are collision
detection and collision response.

In our case also sound needs to be played as a form of collision
response

World
coordinate axes

WTK action functions:

WTsound load(“spring”);

void action()
{
/* Check for collision detection */
iffWTnodepath_intersectbbox(HandNP, BalINP))
{
/* play spring sound*/
WTsound play(spring);

/* Remove the Ball from the scene graph and immediately reattach it
as a child of the Palm

»/

WTnode remove(Ball);

WTmovnode attach(Palm, Ball, 0);

/* stop playing spring sound */
WTsound_stop(spring)
}

}

3

WTK scene graph extension — the haptic node:

Another form of collision response is force feedback if the user has a
haptic glove (such as Rutgers Master II);

This 1s compatible with VRML,;

The fields of the haptics node are stiffness, viscosity, friction and
haptic effect (indicating a force profile — square, sine, constant, ramp)

from (Popescu, 2001)

32

WTK Initiation

Model Geometry

|

Define scene graph

|

Define and link
Sensors

}

Define action
functions

|

Define networking

33

WTK networking:
Uses the “World2World™ library extension of WTK;

A typical client-server architecture uses a single server
that does “double duty” managing connections as well as
data sharing. Simulation stops when a new client requests
connection.

Typical client-server architecture

WTK/W2W uses a single server manager and several
simulation servers to improve scalability and system
response:

The server manager 1s the initial point of contact of a
new client connecting to the simulation — administration
tasks performed transparently of the simulation;

The simulation servers interact directly with the assigned
clients, once handed over by the manager.

This way the ongoing simulation 1s not disrupted when a
new client is requesting connection.

IR EREL AR R R R R R R RN R REN)

Server Manager
CERVMWAN EXE)

v

Simuation Servar
ISERVEREXE)

1cncm; ;c:mz)

WTK two-tier
client-server
architecture

Server

New Chent

Smulstion Server 2
(SERVER EXE) Chent 4

(from World2World release 1, Sense8 Co.)

WTK Simulation Servers:

Shared properties are organized in shared groups. Client X and
Client Y are interested in the position property of the ball object.

The simulation Server manages the distribution of shared
properties to clients that registered interest in that shared group

Position is the property |/ |

§ Ball is the object

mformaﬁon

Client X ClientY

37

WTK Run-time
loop

Start Simulation

14

Read Sensor Data

!

Update Objects
(from sensors and

intelligent actions

Repeats every frame

!

Render scene

(graphics, audio,
haptics)

v

Exit Simulation

Java and Java 3D

Java
object oriented programming language
developed for network applications
platform independence
slower than C/C++

Java 3D

Java hierarchy of classes that serves as an interface to 3D
graphics rendering and sound rendering systems

Perfectly integrated with Java
Strong object oriented architecture
Powerful 3D graphics API

e

Java 3D
Initiation

Java 3D
Initiation

Model Geometry

}

Define scene graph

}

Setup sensors

}

Define behaviors

}

Networking

41

Java 3D geometry:

Geometry can be imported
from various file formats
(e.g. 3DS, DXF, LWS, NFF,
OBJ, VRT, VTK, WRL)

Can be created as a
primitive geometry (e.g.
sphere, cone, cylinder, ...)

Custom geometry created
by specifying the vertices,
edges, normals, texture
coordinates using specially
defined classes

Imported geometry
loaderload(“*Hand.wrl")

Geometry primitive:
new Sphere(radius)

Custom geometry:

new GeometryArray(...)
new LineArray(...)

new QuadArray(...)
new TriangleArray(...)

Java 3D object
appearance:

The appearance of a
geometry is specified using
an appearance object

An appearance-class object
stores information about the
material (diffuse, specular,
shininess, opacity, ...) and
texture

@&

Mat = new Material();
Mat.setDiffuseColor(r, g, b);
Mat.setAmbientColor(r, g, b);
Mat.setSpecularColor(r, g, b);

TexLd = new TextureLoader(“checkered jpg”, ...);
Tex = TexLd.getTexture();

Appr = new Appearance();
Appr.setMaterial(Mat);
Appr.setTexture(Text);

Geom.setAppearance(Appr)

43

Model Geometryé

}

Define scene graph
!
Java 3D Setup sensors
Initiation |

Define behaviors

Networking

Java3D node types:

Compilable sub-graph

Group Transform + child nodes

Select which of the children are visible (useful for LOD)

Node Universe background. Can be a color or an image

Actions to be performed by the simulation

Fog node
Leaf

Light node. Special derived classes: AmbientLight, PointLight,
DirectionalLight

Geometry + Appearance + BoundingBox

Java3D scene graph

VirtualUniverse

Locale
Node

BranchGroup

TransformGroup

ViewPlatform

g View 27
/

46

Loading objects from files

~Java3D offers by default support for Lightwave and Wavefront
model files

- Loaders for other file formats can be downloaded for free from
the web http://www.j3d.org/utilities/loaders.html

- Loaders add the content of the read file to the scene graph as a

single object. However, they provide functions to access the
subparts individually

Universe
Root

Cube

m--

47

Java3D model loading

Adding the model to the scene graph

Scene Sc = loaderload(*Hand.wrl”);
BranchGroup Bg = Sc.getSceneGroup();
RootNode.addChild(Bg);

Accessing subparts of the loaded model

Scene Sc = loaderload(*Hand.wrl”);
BranchGroup Bg = Sc.getSceneGroup();
Thumb = Bg.getChild(0);

Index = Bg.getChild(1);

Middle = Bg.getChild(2);

Ring = Bg.getChild(3);

Small = Bg.getChild(4);

Java3D virtual hand loading:

Palm = loaderload("Palm.wrl").getSceneGroup();

ThumbProximal = loaderload(" ThumbProximal.wrl").getSceneGroup();
ThumbDistal = loaderload(" ThumbDistal.wrl").getSceneGroup();
IndexProximal = loaderload(" IndexProximal.wrl").getSceneGroup();
IndexMiddle = loaderload("IndexMiddle.wrl").getSceneGroup();
IndexDistal = loaderload("IndexDistal.wrl").getSceneGroup();
MiddleProximal = loaderload("MiddleProximal.wrl").getSceneGroup();
MiddleMiddle = loaderload("MiddleMiddle.wrl").getSceneGroup();
MiddleDistal = loader.load("MiddleDistal.wrl").getSceneGroup();
RingProximal = loader.load("RingProximal.wrl").getSceneGroup();
RingMiddle = loaderload("RingMiddle.wrl").getSceneGroup();
RingDistal = loader.load("RingDistal.wrl").getSceneGroup();
SmallProximal = loaderload("SmallProximal.wrl").getSceneGroup();
SmallMiddle = loaderload("SmallMiddle.wrl").getSceneGroup();
SmallDistal = loader.load("SmallDistal.wrl").getSceneGroup();

49

Java3D virtual hand hierarchy:

Palm.addchild(ThumbProximal);
ThumbProximal .addchild(ThumbDistal);

Palm.addchild(IndexProximal);
IndexProximal .addchild(IndexMiddle);
IndexMiddle .addchild(IndexDistal);

Palm.addchild(MiddleProximal);
MiddleProximal .addchild(MiddleMiddle);
MiddleMiddle .addchild(MiddleDistal);

Palm.addchild(RingProximal);
RingProximal .addchild(RingMiddle);
RingMiddle .addchild(RingDistal);

Palm.addchild(SmallProximal);
SmallProximal .addchild(SmallMiddle);
SmallMiddle .addchild(SmallDistal);

Java3D
Initiation

Model Geometry

|

Define scene graph

|

Setup sensors

5

Define behaviors

}

Networking

5

Input devices in Java3D

The only input devices supported by Java3D are the mouse and
the keyboard

The integration of the input devices currently used in VR
applications (position sensors, track balls, joysticks...) relies
entirely on the developer

Usually the drivers are written in C/C++. One needs either to re-
write the driver using Java or use JNI (Java Native Interface) to
call the C/C++ version of the driver. The latter solution 1s more
desirable.

Java3D provides a nice general purpose input device interface
that can be used to integrate sensors. However, many times
developers prefer custom made approaches

Java3D General purpose sensor interface

| - stores information about all the input devices
and sensors involved in the simulation

- interface for an input device driver

- class for objects that provide real time data

One input device can provide one or more sensors
A sensors object needs not be in relation with an input device (VRML style sensors)

PhysicalEnvironment

InputDevices Sensors

A XX XXX @ © @ @ @ @
S~ o

Model Geometryé

}

Define scene graph

Java3iD
Initiation |

Setup sensors
Animating the scene

Networking

Java3D - Animating the simulation

Java3D offers objects for controlling the simulation

A Behaviorobject contains a set of actions performed when the objectreceives

a stimulus
A stimulus is sent by a Wakeup Condition object

Some wakeup classes:
WakeupOnCollisionEntry
WakeupOnCollisionExit
WakeupOnCollisionMovement
WakeupOnElapsedFrames
WakeupOnElapsedTime
WakeupOnSensorEntry
WakeupOnSensorExit
WakeupOnViewPlatformEntry
WakeupOnViewPlatformExit

Java3D - Behavior usage

Universe * We define a behavior Bhv that rotates the
Root sphere by 1 degree

* We want this behavior to be called each
frame so that the sphere will be spinning

WakeupOnElapsedFrames Wup = new WakeupOnElapsedFrames(0);
Bhv.wakeupOn(Wup);

VC 6.4 onbookCD

56

Java3iD
Initiation

Model Geometryé

|

Define scene graph

|

Setup sensors

}

Define behaviors

|

Networking

57

Java3D - Networking

Java3D does not provide a built-in solution for networked virtual environments

However, it’s perfect integration in the Java language allows the developerto
use the powerful network features offered by Java

Java3D applications can run as stand alone applications or as appletsin a web

browser
Server
Java3D Java3D Java3D Java3D
simulation simulation simulation simulation
Java Java Java Java
Applet Application Applet Application

58

Java3D and VRML

VRML provides possibilities for defining the objects and
animating the objects in a virtual world

Graphics APIs such as Java3D or WTK load from a VRML file

only the static information, ignoring the sensors, routes, scripts,
etc.

Java3D structure 1s general enough to make the import of sensors
and routes possible but currently we are not aware of any loader
that does it

One of the most popular library of Java3D loaders is the NCSA
Portfolio (http://www.ncsa.uiuc.edu/~srp/Java3D/portfolio/)

NCSA Portfolio

Offers loaders for several model Loades the following parts of
files VRMLI7 files

3D Studio (3DS) Appearance

TrueSpace COB loader (COB) Box

Java 3D Digital Elevation Map (DEM) Coordinate

AutoCAD (DXF) Collision (for grouping only)

Imagine (I10B) Group

Lightwave (LWS) IndexedFaceSet

Sense8 (NFF) IndexedLineSet

Wavefront (OBJ) Material

Protein Data Bank (PDB) Normal

Visualization Toolkit (VIK) Shape

VRMLO97 Sphere

Transform

Comparison between Java3D and WTK

A comparative study was done at Rutgers between Java3d
(Version 1.3beta 1) and WTK (Release 9);

The simulation ran on a dual Pentium IIT 933 MHz PC (Dell)
with 512 Mbytes RAM, with an Wildcat 4110 graphics accelerator
which had 64 Mbytes RAM;

The I/O interfaces were a Polhemus Insidetrack or the Rutgers
Master II force feedback glove;

The scene consisted of several 420-polygon spheres and a virtual
hand with 2,270 polygons;

The spheres rotated constantly around an arbitrary axis, while the
hand was either rotating, or driven by the user.

e

Java3D —-WTK Comparison

Graphics scene used in experiments

Comparison between Java3D and WTK

The simulation variables used to judged performance were:
graphic mode (monoscopic, stereoscopic),

rendering mode (wireframe, Gouraud, textured);

scene complexity (number of polygons 5,000 — 50,000);
lighting (number of light sources 1, 5, 10);

interactivity (no interaction, hand input, force feedback)

Java3lD —-WTK Comparison

Average frame rate for configuration: Gouraud-collision-stereo
T T T T T T T T

S0 -¥= WTK - 1 light £
©- WTK - 5lights

45+ Java 3D - 1 light 2
Java 3D - 5 lights

40+ -

35+ o

30

25

Frames per second

20

15}

10

| | 1 || 1 |

o ! |
0.5 1 1.5 2 2.5 3 3.5 < 4.5 5

Number of polygons x 104

Java3dis faster on averagethan WTK, but has higher variability

Java3D —-WTK Comparison

Polhemus graphic latency for configuration: Gouraud-collision-stereo

150 T T T 1 i T T

= WTK - 1 light
-©- WTK - 5 lights

Java 3D - 1 light
Java 3D - 5 lights

Latency (msec)

=

0 1 1 1 | | 1 1
0.5 1 1.5 2 25 3 35 4 4.5 5

Number of polygons x 10*

Java3ddRelease 3.1 Beta 1 has less system latencies than WTK Release 9
85

49730-5-Gouraud-collision-stereo-exact-graphics
400 T T Y T Y T T

Average mean: 82.5027
Standard deviation: 12.368
350 ~ Frames per second: 12.1149

300 - -

Frame duration (msec)
N N
8 n
o
1 1

-t

O

o
]
!

100 .

50-] -

A 1 1

1 1) L
0 100 200 300 400 500 600 700
Frames

But Java3d has more variability in the scene rendering time

400

350}

300

N
(9))
o

200

Frame duration (msec)

100

50 ¢

49730-5-Gouraud-collision-stereo-exact-graphics

150

L} T I T

T
Average mean: 101.4037
Standard deviation: 11.4062
Frames per second: 9.8487

1 A I 1

1 ; 1 1
100 200 300 400 500
Frames

WTK does not have spikes in the scene rendering time

&7

Yo

Thank You

19BMT401 /Virtual Reality in Medicine/Dr Karthika A/AP/BME

