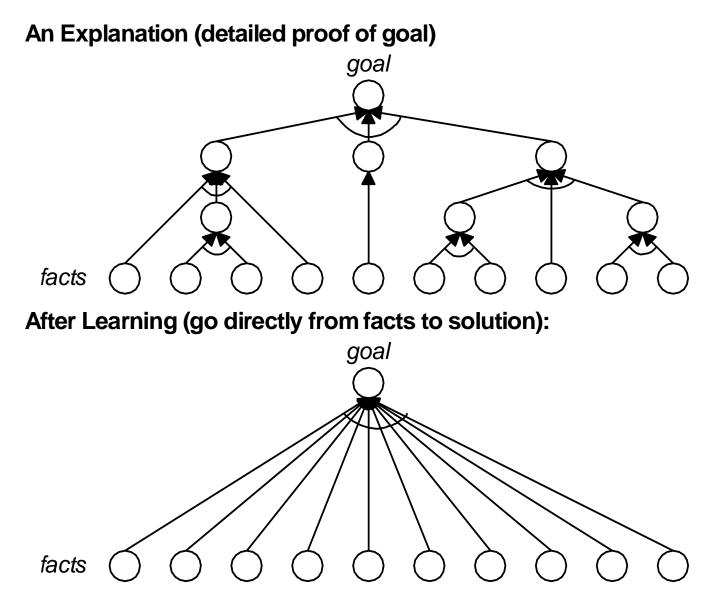

Explanation Based Learning (EBL)

What is EBL ?

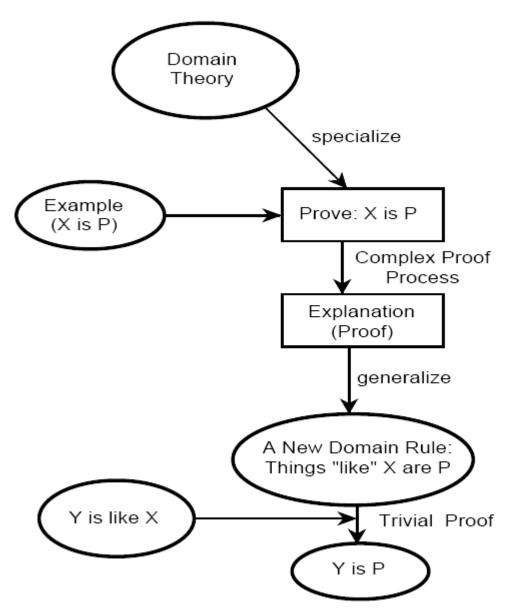
- Learning *general* problem-solving techniques by observing and analyzing human solutions to *specific* problems.
- EBL attempts to formulate a *generalization* after observing only a single example.
- Introduced by Gerald De Jong in 1981.

"Hey! Look what Zog do!"

(drawn by Gary Larson)


The EBL Hypothesis

- EBL is based on the hypothesis that an intelligent system can learn a general concept after observing only a single example.
- By understanding why an example is a member of a concept, can learn the essential properties of the concept.
- EBL uses prior knowledge to analyze or explain each training example in order to infer what properties are relevant to the target function and which are irrelevant.


Learning by Generalizing Explanations

- Given
 - Goal concept (e.g., some predicate calculus statement)
 - Training example (facts)
 - Domain Theory (inference rules)
 - Operationality Criterion
- Given this four inputs, the task is to determine a generalization of the *training example* that is sufficient concept definition for the *goal concept* and that satisfies the *operationality criteria*.
- The operationality criterion requires that the final concept definition be described in terms of the predicates used to describe the training example.

Standard Approach to EBL

The EBL Process

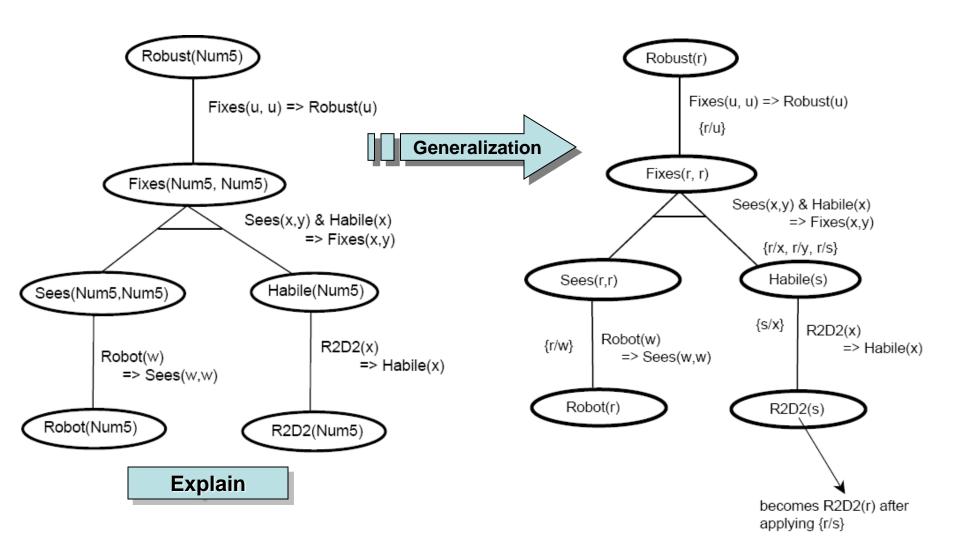
An Example

• Domain theory:

Fixes(u,u) \rightarrow Robust(u) // An individual that can fix itself is robust Sees(x,y) Λ Habile(x) \rightarrow Fixes(x,y) // A habil individual that can see another entity can // fix that entity

Robot(w) \rightarrow Sees(w,w)// All robots can see themselvesR2D2(x) \rightarrow Habile(x)// R2D2-class in individuals are habil

• Facts:


...

Robot(Num5) R2D2(Num5) Age(Num5,5)

Goal:
Robust(Num5)

...

An Example (continued...)

 $Robot(r) \land R2D2(r) \Rightarrow Robust(r)$

History ??

- EBL may be viewed as a convergence of several distinct lines of research within machine learning.
- EBL has developed out of efforts to address each of the following problems:
 - Justified generalization.
 - Chunking.
 - Operationalization.
 - Justified analogy.

Recommended Reading

- Mitchell T.M., Keller R.M., Kedar-Cabelli S.T., Explanation-Based Generalization: A Unifying View, *Machine Learning* 1, pp. 47-80, 1986, Kluwer Academic Publishing.
- DeJong G., Mooney R., Explanation-Based Learning: An Alternative View, *Machine Learning* 1, 1986, Kluwer Academic Publishing.
- Ellman, T, Explanation-Based Learning: A Survey of Programs and Perspectives, ACM Computing Survayeys, Vol. 21, No. 2, 1989.

Available online at:

<u>ACM Digital Library</u> or http://citeseer.nj.nec.com/cs

Conclusions

- Explanation Based Learning (EBL):
 - Needs only one example.
 - Requires complete knowledge about the concept.
 - Shows the importance of prior knowledge in learning.